




已阅读5页,还剩28页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第4讲平面向量应用举例 2014年高考会这样考 以平面向量的数量积为工具 考查其综合应用性问题 常与三角函数 解析几何等结合 考点梳理 向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行 垂直 平移 全等 相似 长度 夹角等问题 1 证明线段平行或点共线问题 包括相似问题 常用共线向量定理 a b 2 证明垂直问题 常用数量积的运算性质 a b 1 向量在平面几何中的应用 a b b 0 x1y2 x2y1 0 x1x2 y1y2 0 a b 0 3 求夹角问题 利用夹角公式与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点题型 解答此类问题 除了要熟练掌握向量数量积的坐标运算公式 向量模 向量夹角的坐标运算公式外 还应掌握三角恒等变换的相关知识 2 向量在三角函数中的应用 向量在解析几何中的应用 是以解析几何中的坐标为背景的一种向量描述 它主要强调向量的坐标问题 进而利用直线和圆锥曲线的位置关系的相关知识来解答 坐标的运算是考查的主体 3 向量在解析几何中的应用 一个手段实现平面向量与三角函数 平面向量与解析几何之间的转化的主要手段是向量的坐标运算 两条主线 1 向量兼具代数的抽象与严谨和几何的直观与形象 向量本身是一个数形结合的产物 在利用向量解决问题时 要注意数与形的结合 代数与几何的结合 形象思维与逻辑思维的结合 2 要注意变换思维方式 能从不同角度看问题 要善于应用向量的有关性质解题 A 直角三角形B 等腰三角形C 等腰直角三角形D 无法确定答案B 考点自测 A 一次函数且是奇函数B 一次函数但不是奇函数C 二次函数且是偶函数D 二次函数但不是偶函数解析函数f x x2a b b2 a2 x a b a b a b 0 f x b2 a2 x a b b2 a2 0 f x 为一次函数且是奇函数 故选A 答案A 2 2013 新余模拟 若a b是非零向量 且a b a b 则函数f x xa b xb a 是 A 4 0B 16 0C 2 0D 16 4解析设a与b夹角为 a 1 b 2 2a b 2 4a2 4a b b2 8 4 a b cos 8 8cos 0 cos 1 1 8 8cos 0 16 即 2a b 2 0 16 2a b 0 4 答案A A 2B 4C 5D 10 答案D 答案x 2y 4 0 A 等边三角形B 等腰三角形C 直角三角形D 等腰直角三角形 审题视点 根据向量式寻找 ABC边 角之间的关系 考向一向量在平面几何中的应用 答案C 对于此类问题 一般需要灵活运用向量的运算法则 运算律 将已知条件等价变形 从而得到结论 特别地 有的问题还需要依据几何图形选取适当的基底 基底中的向量尽量已知模或夹角 将题中涉及的向量用基底表示 然后计算或证明 A 重心 外心 垂心B 重心 外心 内心C 外心 重心 垂心D 外心 重心 内心 答案C 1 若a与b 2c垂直 求tan 的值 2 求 b c 的最大值 3 若tan tan 16 求证 a b 审题视点 根据平面向量的运算性质列式 三角函数式 进而转化为三角恒等变换和三角函数性质问题 1 解因为a与b 2c垂直 所以a b 2c 4cos sin 8cos cos 4sin cos 8sin sin 4sin 8cos 0 因此tan 2 考向二向量在三角函数中的应用 例2 设向量a 4cos sin b sin 4cos c cos 4sin 1 求动点P的轨迹方程 审题视点 1 设出动点P的坐标 化简向量之间的关系 整理即得轨迹方程 2 利用圆的性质化简向量数量积 将其转化为动点P与定点N的距离的最值 最后代入点的坐标将其转化为函数的最值求解 考向三向量在解析几何中的应用 向量在解析几何中的作用 1 载体作用 向量在解析几何问题中出现 关键是脱去 向量外衣 导出曲线上点的坐标之间的关系 从而解决有关距离 斜率 夹角 轨迹 最值等问题 2 工具作用 利用a b a b 0 a b a b b 0 可解决垂直 平行问题 特别地 其坐标表示对于解决解析几何中的垂直 平行问题起到化繁为简的效果 命题研究 通过近三年高考试题分析 考查平面向量的有关知识 常与三角函数 解析几何结合在一起在解答题中出现 主要是以三角函数 解析几何等知识为载体 考查数量积的定义 性质等 若出现平面向量与三角函数的交汇问题 题目难度中等 规范解答8 高考中平面向量与三角函数的交汇问题 教你审题 一审把数量积转化为三角形边 角关系 二审利用正弦定理进行边化角 三审利用在 ABC中tan A B tanC 反思 1 解决平面向量与三角函数的交汇问题 要利用平面向量的定义和运算法则准确转化为三角函数式 2 本题难度中档偏下 大部分考生能较准确地做出来 得到满分 求平面向量与三角函数的交汇问题的一般步骤 第一步 将向量间的关系式化成三角函数式 第二步 化简三角函数式 第三步 求三角函数式的值或求角或分析三角函数式的性质 第四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 购书阅读活动方案
- 函数考试题目及答案
- 锅炉工作考试题及答案
- 广东氩弧焊考试题及答案
- 农业养殖场建设合作协议
- 企业信息化电子网络开发协议
- 儿科科室考试题及答案
- 电子档考试题及答案
- 农业产业链合作与供应保障协议
- 标准化客户服务流程及服务质量监测工具
- GB/T 32151.27-2024温室气体排放核算与报告要求第27部分:陆上交通运输企业
- 教学教学(以往培训课件)农村集体经济审计问题
- 医疗建筑施工要点
- 对新员工保密基本培训
- 石油化工建设工程总承包招标文件示范文本
- 低压电工培训课件-电工常用工具、仪表的使用
- 口耳目手足课件
- 4.2 以礼待人 课件-2024-2025学年统编版道德与法治八年级上册
- 造口并发症护理
- GB/T 6553-2024严酷环境条件下使用的电气绝缘材料评定耐电痕化和蚀损的试验方法
- 加油站物业承包协议模板
评论
0/150
提交评论