投资学第21章期权定价.ppt_第1页
投资学第21章期权定价.ppt_第2页
投资学第21章期权定价.ppt_第3页
投资学第21章期权定价.ppt_第4页
投资学第21章期权定价.ppt_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

CHAPTER21 OptionValuation Intrinsicvalue profitthatcouldbemadeiftheoptionwasimmediatelyexercisedCall stockprice exercisepricePut exerciseprice stockpriceTimevalue thedifferencebetweentheoptionpriceandtheintrinsicvalue OptionValues Figure21 1CallOptionValuebeforeExpiration Table21 1DeterminantsofCallOptionValues RestrictionsonOptionValue Call ValuecannotbenegativeValuecannotexceedthestockvalueValueofthecallmustbegreaterthanthevalueofleveredequityC S0 X D 1 rf TC S0 PV X PV D Figure21 2RangeofPossibleCallOptionValues Figure21 3CallOptionValueasaFunctionoftheCurrentStockPrice Figure21 4PutOptionValuesasaFunctionoftheCurrentStockPrice 100 120 90 StockPrice C 10 0 CallOptionValueX 110 BinomialOptionPricing TextExample AlternativePortfolioBuy1shareofstockat 100Borrow 81 82 10 Rate Netoutlay 18 18PayoffValueofStock90120Repayloan 90 90NetPayoff030 18 18 30 0 PayoffStructureisexactly3timestheCall BinomialOptionPricing TextExampleContinued 18 18 30 0 C 30 0 3C 18 18C 6 06 BinomialOptionPricing TextExampleContinued AlternativePortfolio oneshareofstockand3callswritten X 110 PortfolioisperfectlyhedgedStockValue90120CallObligation0 30Netpayoff9090Hence100 3C 81 82orC 6 06 ReplicationofPayoffsandOptionValues GeneralizingtheTwo StateApproach Assumethatwecanbreaktheyearintotwosix monthsegmentsIneachsix monthsegmentthestockcouldincreaseby10 ordecreaseby5 Assumethestockisinitiallysellingat100Possibleoutcomes Increaseby10 twiceDecreaseby5 twiceIncreaseonceanddecreaseonce 2paths GeneralizingtheTwo StateApproachContinued 100 110 121 95 90 25 104 50 AssumethatwecanbreaktheyearintothreeintervalsForeachintervalthestockcouldincreaseby5 ordecreaseby3 Assumethestockisinitiallysellingat100 ExpandingtoConsiderThreeIntervals S S S S S S S S S S ExpandingtoConsiderThreeIntervalsContinued PossibleOutcomeswithThreeIntervals EventProbabilityFinalStockPrice3up1 8100 1 05 3 115 762up1down3 8100 1 05 2 97 106 941up2down3 8100 1 05 97 2 98 793down1 8100 97 3 91 27 Figure21 5ProbabilityDistributions Co SoN d1 Xe rTN d2 d1 ln So X r 2 2 T T1 2 d2 d1 T1 2 whereCo CurrentcalloptionvalueSo CurrentstockpriceN d probabilitythatarandomdrawfromanormaldistributionwillbelessthand Black ScholesOptionValuation X Exercisepricee 2 71828 thebaseofthenaturallogr Risk freeinterestrate annualizescontinuouslycompoundedwiththesamematurityastheoption T timetomaturityoftheoptioninyearsln Naturallogfunction Spoundedrateofreturnonthestock Black ScholesOptionValuationContinued Figure21 6AStandardNormalCurve So 100X 95r 10T 25 quarter 50d1 ln 100 95 10 52 2 5 251 2 43d2 43 5 251 2 18 CallOptionExample N 43 6664Table21 2dN d 42 6628 43 6664Interpolation 44 6700 ProbabilitiesfromNormalDistribution N 18 5714Table21 2dN d 16 5636 18 5714 20 5793 ProbabilitiesfromNormalDistributionContinued Table21 2CumulativeNormalDistribution Co SoN d1 Xe rTN d2 Co 100X 6664 95e 10X 25X 5714Co 13 70ImpliedVolatilityUsingBlack Scholesandtheactualpriceoftheoption solveforvolatility Istheimpliedvolatilityconsistentwiththestock CallOptionValue Spreadsheet21 1SpreadsheettoCalculateBlack ScholesOptionValues Figure21 7UsingGoalSeektoFindImpliedVolatility Figure21 8ImpliedVolatilityoftheS P500 VIXIndex Black ScholesModelwithDividends ThecalloptionformulaappliestostocksthatpaydividendsOneapproachistoreplacethestockpricewithadividendadjustedstockpriceReplaceS0withS0 PV Dividends PutValueUsingBlack Scholes P Xe rT 1 N d2 S0 1 N d1 UsingthesamplecalldataS 100r 10X 95g 5T 2595e 10 x 25 1 5714 100 1 6664 6 35 P C PV X So C Xe rT SoUsingtheexampledataC 13 70X 95S 100r 10T 25P 13 70 95e 10X 25 100P 6 35 PutOptionValuation UsingPut CallParity Hedging HedgeratioordeltaThenumberofstocksrequiredtohedgeagainstthepriceriskofholdingoneoptionCall N d1 Put N d1 1OptionElasticityPercentagechangeintheoption svaluegivena1 changeinthevalueoftheunderlyingstock UsingtheBlack ScholesFormula Figure21 9CallOptionValueandHedgeRatio BuyingPuts resultsindownsideprotectionwithunlimitedupsidepotentialLimitationsTrackingerrorsifindexesareusedfortheputsMaturityofputsmaybetooshortHedgeratiosordeltaschangeasstockvalueschange PortfolioInsurance Figure21 10ProfitonaProtectivePutStrategy Figure21 11HedgeRatiosChangeastheStockPriceFluctuates Figure21 12S P500Cash to FuturesSpreadinPointsat15MinuteIntervals HedgingOnMispricedOptions Optionvalueispositivelyrelatedtovolatility Ifaninvestorbelievesthatthevolatilitythatisimpliedinanoption spriceistoolow aprofitabletradeispossibleProfitmustbehedgedagainstadeclineinthevalueofthestockPerformancedependsonoptionpricerelativetotheimpliedvolatility HedgingandDelta TheappropriatehedgewilldependonthedeltaRecallthedeltaisthechangeinthevalueoftheoptionrelativetothechangeinthevalueofthestock Delta ChangeinthevalueoftheoptionChangeofthevalueofthestock MispricedOption TextExample Impliedvolatility 33 Investorbelievesvolatilityshou

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论