Sampling抽样技术统计学专业课课件.ppt_第1页
Sampling抽样技术统计学专业课课件.ppt_第2页
Sampling抽样技术统计学专业课课件.ppt_第3页
Sampling抽样技术统计学专业课课件.ppt_第4页
Sampling抽样技术统计学专业课课件.ppt_第5页
已阅读5页,还剩163页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Sampling Design Analysis SharonL LohrArizonaStateUniversity ContentsCHAPTER1Introduction1 1ASampleControversy1 2RequirementsofaGoodSample1 3SelectionBias1 4MeasurementBias1 5QuestionnaireDesign1 6SamplingandNonsamplingErrorsCHAPTER2SimpleProbabilitySamples2 1TypesofProbabilitySamples 2 2FrameworkforProbabilitySampling2 3SimpleRandomSampling2 4ConfidenceIntervals2 5SampleSizeEstimation2 6SystematicSampling2 7RandomizationTheoryResultsforSimpleRandomSampling 2 8AModelforSimpleRandomSampling 2 9WhenShouldaSimpleRandom SampleBeUsed CHAPTER3RatioandRegressionEstimation3 1RatioEstimation3 2RegressionEstimation3 3EstimationinDomains3 4ModelsforRatioandRegressionEstimation 3 5Comparison CHAPTER4StratifiedSampling4 1WhatIsStratifiedSampling 4 2TheoryofStratifiedSampling4 3SamplingWeights4 4AllocatingObservationstoStrata4 5DefiningStrata4 6AModelforStratifiedSampling 4 7Post stratification4 8QuotaSampling CHAPTER5ClusterSamplingwithEqualProbabilities5 1NotationforClusterSampling5 2One StageClusterSampling5 3Two StageClusterSampling5 4UsingWeightsinClusterSamples5 5DesigningaClusterSample5 6SystematicSampling5 7ModelsforClusterSampling CHAPTER1IntroductionWhenstatisticsarenotbasedonstrictlyaccuratecalculations theymisleadinsteadofguide Themindeasilyletsitselfbetakeninbythefalseappearanceofexactitudewhichstatisticsretainintheirmistakes andconfidentlyadeptserrorsclothedintheformofmathematicaltruth AlexisdeTocqueville DEMOCRACYINAMERICA 1 1ASamplingControversyShereHite sbook WomenandLove ACulturalRevolutioninprogress 1987 84 ofwomenare notsatisfiedemotionallywiththeirrelationships p804 70 ofallwomen marriedfiveormoreyearsarehavingsexoutsideoftheirmarriages p856 95 ofwomen reportformsofemotionalandpsychologicalharassmentfrommenwithwhomtheyareinloverelationships p810 84 ofwomenreportformsofcondescensionfromthemenintheirloverelationships p809 Harassment toannoypersistentlysexualharassment uninvitedandunwelcomeverbalorphysicalbehaviorofasexualnatureespeciallybyapersoninauthoritytowardasubordinate asanemployeeorstudent Condescension 1 voluntarydescentfromone srankordignityinrelationswithaninferior 2 Theactofcondescendingoraninstanceofit 3 Patronizinglysuperiorbehaviororattitude Vignette Adecorativedesignplacedatthebeginningorendofabookorchapterofabookoralongtheborderofapage ThefollowingcharacteristicsofthesurveymakeHite sresultunsuitableforgenerali zation Thesamplewasself selected Thequestionnairesweremailedtospecificgroups Thequestionsinthesurveyaretoocomplicated Manyofthequestionsarevague usingwordssuchaslove Manyofthequestionsareleading 1 2RequirementsofaGoodSampleAperfectsampleshould 1 beascaled downversionofthepopulation 2 canmirrorcharacteristicsofthewholepopulationSomedefinitionstomakethenotionofagoodsamplemoreprecise ObservationunitAnobjectonwhichameasurementistaken TargetpopulationThecompletecollectionofobservationswewanttostudy SampleAsubsetofapopulation SampledpopulationThecollectionofallpossibleobservationunitsthatmighthavebeenchoseninasample Thepopulationfromwhichthesamplewastaken SamplingunitTheunitweactuallysample SamplingframeThelistofsamplingunits TargetpopulationSamplingframepopulation Sampledpopulation Notreachable Refusetorespond Notcapabletorespond Noteligibleforsurvey Inanidealsurvey thesampledpopulationwillbeidenticaltothetargetpopulation butthisidealisrarelymetexactly IntheHitestudyTargetpopulation alladultwomenintheUnitedStatesSampledpopulation womenbelongingtowomen sorganizationswhowouldreturnthequestionnaire IntheNationalCrimeVictimizationSurvey Targetpopulation allhouseholdsintheUnitedStatesSampledpopulation householdsinthesamplingframethatare athome andagreetoanswerquestions IntheNationalPesticideSurvey Targetpopulation allcommunitywatersystemsandruraldomesticwellsintheUnitedStates Sampledpopulation allcommunitywatersystemsandallidentifiabledomesticwellsoutsideofgovernmentreservationsthatbelongedtohouseholdswillingtocooperatewiththesurvey Inpublicopinionpolls Targetpopulation personswhowillvoteinthenextelectionSampledpopulation personswhocanbereachedbytelephoneandsaytheyarelikelytovoteinthenextelection 1 3SelectionBiasThefollowingexamplesindicatesomewaysinwhichselectionbiascanoccur Useasample selectionprocedurethat unknowntotheinvestigators dependsonsomecharacteristicassociatedwiththepropertiesofinterest Deliberatelyorpurposefullyselecta representative sample forinstance ajudgmentsample Misspecifythetargetpopulation Failtoincludeallthetargetpopulationinthesamplingframe calledunder coverage Substituteaconvenientmemberofapopulationforadesignatedmemberwhoisnotreadilyavailable Failtoobtainresponsesfromtheentirechosensample Thisiscallednon responseAllowthesampletoconsistentirelyofvolunteers CASESTUDYLiteraryDigestAneververyfamousmagazineinUSAwhobegantakingpollstoforecasttheoutcomeoftheUSApresidentialelectionin1912 theirpollsattainedareputationforaccuracybecausetheyforecastthecorrectwinnerineveryelectionbetween1912and1932 In1932 forexample thepollpredictedthatRooseveltwouldreceive56 ofthepopularvoteand474votesintheelectoralcollege intheactualelection Rooseveltreceived58 ofthepopularvoteand472votesintheelectoralcollege Electoralcollege intheU S abodyofpeoplerepresentingthestatesoftheU S whoformallycastvotesfortheelectionofthepresidentandvicepresident OnOctober31 1936 thepollpredictedTheoutcomeis RepublicanAlfLandon 55 PresidentRoosevelt 41 RepublicanAlfLandon 37 PresidentRoosevelt 61 Tworeasonsthataccountedfortheoutcome Oneproblemmayhavebeenundercoverageinthesamplingframe whichreliedheavilyontelephonedirectoriesandautomobileregistrationlist Thelowresponserate lessthan25 tothesurveywaslikelythesourceofmuchoftheerror OnelessontobelearntfromtheLiteraryDigestpollisthatthesheersizeofasampleisnoguaranteeofitaccuracy 1 4MeasurementBiasInfollowingcases itismostlikelytohappen Peoplesometimesdonottellthetruth PeopledonotunderstandthequestionsPeopleforgetPeoplegivedifferentanswerstodifferentinterviewersPeoplecatertotheinterviewersTheinterviewermayhavehisowninclinationtothesurveyCertainwordsmayhavevaguemeaningThequestionnairedoesn twordwellorisnotarrangedinagoodorder 1 5QuestionnaireDesignDecidewhatyouwanttofindoutAlwaystestyourquestionsbeforetakingthesurveyKeepitsimpleandclearUsespecificquestionsinsteadofgeneralonesRelateyourquestionstotheconceptofinterest Decidewhethertouseopenorclosedquestions openquestions therespondentsisnotpromptedwithcategoriesforresponse closedones multiplechoices ReporttheactualquestionaskedAvoidquestionsthatpromptormotivatetherespondenttosaywhatyouwouldliketohearUseforced choice ratherthanagreeordisagreequestionsAskonlyoneconceptineachquestionPayattentiontoquestion ordereffects 1 6samplingandnonsamplingerrorssamplingerrorsTheerrorthatresultsfromtakingonesampleinsteadofexaminingthewholepopulationnonsamplingerrorsTheerrorthatcannotbeattributedtothesample to samplevariability causedchieflybyfollowingcauses SelectionbiasIncorrectanswers IncompletevalueNonresponseSelectionbiasandmeasurementbiasareexamplesofnonsamplingerrorsInalotofcases nonsamplingerrorsmayhavemuchworseeffectonaccuracyofthesamplethansamplingones Whydoweusesampling Samplingcanprovidereliableinformationatfarlesscostthanacensus Datacanbecollectedmorequickly soestimatescanbepublishedinatimelyfashion Finally andlesswellknown estimatesbasedonsamplesurveysareoftenmoreaccuratethanthosebasedonacensusbecauseinvestigatorscanbemorecarefulwhencollectingdata CHAPTER2SimpleProbabilitySamplesProbabilitySampling inaprobabilitysample eachunitinthepopulationhasaknown butnotcertainlyequal probabilityofselection andachancemethodsuchasusingnumbersfromarandomnumbertableisusedtochoosethespecificunitstobeincludedinthesample 2 1TypesofProbabilitySamples1 Simplerandomsample2 Stratifiedsample3 Clustersample Asimplerandomsample SRS isthesimplestformofprobabilitysample AnSRSofsizenistakenwheneverypossiblesubsetofnunitsinthepopulationhasthesamechanceofbeingthesample Inastratifiedrandomsample thepopulationisdividedintosubgroupscalledstrata ThenanSRSisselectedfromeachstratum andtheSRSsinthestrataareselectedindependently Inaclustersample observationunitsinthepopulationareaggregatedintolargersamplingunits calledclusters ThenanSRSisdrawnundertheconditionthateachclusterisviewedasaunit 2 2FrameworkforProbabilitySamplingAspecialcaseforitisN 4 whichresultsin Itspossiblesamples n 2 are Example2 1 Example2 2 i 1 2 3 4 5 6 7 8 1 2 4 4 7 7 7 8 Theexpectedvalueof isthemeanofthesamplingdistributionof k 222830323436384042444648505258 1623746126473261 Thevarianceofthesamplingdistributionof i e is TheMeanSquaredError MSE ratherthanvariancetomeasuretheaccuracyofanestimatoris Anestimatorisunbiasedif Anestimatorispreciseifthefollowingissmall Anestimatorisaccurateifthefollowingissmall Someindicatorsforthepopulation Thepopulationtotalis Themeanofthepopulationis Thevarianceofthepopulationvaluesaboutthemeanis Thestandarddeviationofthepopulationvaluesaboutthemeanis Thecoefficientofvariation CV is Proportionisaspecialcaseofmean Thedistinctionbetweenmeanandproportionis inthecaseofmean thevariablecantakemorethantwovalues whereasinproportioncase itcantakeandcanonlytaketwovalues Wherethevariableis 2 3SimpleRandomSamplingTherearetwotypesofSimpleRandomSample 1SimpleRandomSamplewithreplacement SRSWR Inthiscase therearepossiblesamplesandwemaygetduplicates 2SimpleRandomSamplewithreplacement SRS Inthiscase therearepossiblesamplesandwemaynotgetduplicates ForestimatingthepopulationmeaninanSRS weusethesamplemean Theisanunbiasedestimatorofthepopulationmean andthevarianceofis Inwhichiscalledthefinitepopulationcorrection fpc Forestimatingthepopulationvariance weusethesamplevariance Anunbiasedestimatorofisasfollow Buttheestimatedvarianceofisusuallyreportedbyitsstandarderror SE Theestimatedcoefficientofvariationofanestimateis Allthisresultsapplytotheestimationofapopulationtotal t since Theunbiasedestimatoroftis Itsvarianceis Buttheunbiasedestimatorofthisvarianceis since Asforproportionvariable theparametersare thus Theestimatorsare Where 2 4ConfidenceIntervalsUsedtoindicatehowaccurateourestimatesare Usuallyappearsinthisway Ifwetakeasanexample thenwehave Thedistinctionbetweendistributionandsamplingdistributionfromit A distribution referstotheoriginaldistributionofavariabley whereasa samplingdistribution referstothedistributiongeneratedfromtheoriginalone likethedistributionofand Example2 1 11 4 14 4 15 4 16 4 17 4 29 4 Withauniformdistribution only8cases Withanon uniformdistribution upto15cases Thedistinctionbetweenlawoflargenumbersandcentrallimittheorem lawoflargenumbers saysthatthereisalmostnodifferencebetweensampleandpopulationmeanifnissufficientlylarge bothdependentlyorindependently withthesameordifferentdistribution whereas centrallimittheorem saysthatthedistributionofanysamplemeanconvergestonormaldistributionifnissufficientlylarge withthesameordifferentdistribution Bernoulli slawoflargenumbersis Linderbergandlevy scentrallimittheoremis 2 5SampleSizeEstimationAninvestigatoroftenmeasuresseveralvariablesandhasanumberofgoalsforasurvey AnyonedesigninganSRSmustdecidewhatamountofsamplingerrorintheestimatesistolerableandmustbalancetheprecisionoftheestimateswiththecostofthesurvey Followthesestepstoestimatethesamplesize Askquestionsas A Whatisexpectedofthesample B HowmuchprecisiondoIneed C Whataretheconsequencesofthesampleresults D Howmucherroristolerable Findanequationrelatingthesamplesizenandourexpectationsofthesample Estimateanyunknownquantitiesandsolveforn Ifthesamplesizeyoucalculatedinlaststepismuchlargerthanyoucanafford Gobackandadjustsomeoftheexpec tationsforthesurveyandtryagain Specifythetolerableerror FindanequationSolvingforn wehave Inrelativeprecisioncase wehave 2 7RandomizationTheoryResultsforSimpleRandomSampling ToverifyandDefine thenwehave Asaconsequenceofequation 2 18 inordertocalculatethevarianceof notethat Nowletusprove Proof CHAPTER3RatioandRegressionEstimationExampleincensusbyLaplace 3 1RatioEstimationEstimationmethodusingauxiliaryvariableDefine andThen Ratioandregressionestimationbothtakeadvantageofthecorrelationcoefficientofxandyinthepopulation thehigherthecorrelation thebettertheywork Definethepopulationcorrelationcoefficientofxandytobe 3 1 1Whydoweuseratioestimation Sometimeswesimplywanttoestimatearatio Averageyieldperacre Percapitaincome Theratioofliabilitiestoassets Theratioofthefishcaughttothehoursspentfishing Sometimeswewanttoestimateapopulationtotal butthepopulationsizeNisunknown Ratioestimationisusedtoincreasetheprecisionofestimatedmeansandtotals Ratioestimationisusedtoadjustestimatesfromthesamplesothattheyreflectdemographicaltotals Population 4000Sample 400 2700females1300males 240females160males tobecomeateacherSimpleestimation Ratioestimation 240females160males 84females40males Ratioestimationisusedtoadjustnonresponse 3 1 2BiasandMeanSquaredErrorofRatioEstimatorsRatioestimationisbiased unlikeSRSestimation butwithareducedvarianceasacompensatorforthepresenceofbias Since weget Thenwehave Consequently asshownbyHartleyandRoss 1954 Anotherwaytoshowthisis Thebiasofissmallif 1 thesamplesizenislarge 2 thesamplingfractionn Nislarge 3 islarge4 issmall 5 thecorrelationRiscloseto1 Theproofforitis IntheworksofHartley Ross anunbiasedestimatorfortheparameterBisgivenafterthefollowingisproved Theunbiasedestimatoris TheapproximatedMSEofis TheapproximatedMSEofwillbesmallif 1 thesamplesizenislarge 2 thesamplingfractionn Nislarge 3 thedeviationaboutthelineislarge 4 islarge 5 thecorrelationRiscloseto 1 Theproofforitis And And Thereforeweget Inpractice Bisunknown thenletItfollowsfromabove wewillhave TheCIscanbeconstructedas Let sjuststudytwoexamplesinthetextbook 3 1 2 1AccuracyoftheMSEApproximationFor 3 6 tobeagoodapproximationofMSE wewantalargesamplesizen 30 and3 1 2 2Advantageofratioestimation Then Sototheaccuracyoftheapproximation holds ifandonlyif 3 2RegressionEstimationRatioestimationworksbestifthedataarewellfitbyastraightlinethroughtheorigin Butsometimes dataappeartobeevenlyscatteredaboutastraightlinethatdoesnotgothroughtheorigin thatis thedatalookasthoughtheusualstraight lineregressionmodelwouldprovideagoodfit where Hereristhesamplecorrelationcoefficientofxandy Liketheratioestimator theregressionestimatorisbiased Thebiasis LetThen Thatis TheapproximationMSEissmallif 1 thesamplesizenislarge 2 thesamplingfractionn Nislarge 3 issmall 4 thecorrelationRiscloseto 1or1 Let thentheStandardErroris CHAPTER4StratifiedSampling4 1WhatIsStratifiedSampling stratum 1 ahorizontallayerofmaterial especiallyoneofseveralparallellayersarrangedoneontopofanother 2 alevelofsocietycomposedofpeoplewithsimilarsocial cultural oreconomicstatusstrata thepluralformofstratumstratify toform arrange ordepositinlayers WhydoweuseStratifiedSampling 1 tobeprotectedfromthepossibilityofobtainingvery bad sample Population Sample 2500Females 1500Males 150Males 250Females 2 tohavedataofknownprecisionforsubgroups Population Sample 3500Females 500Males 250Females 150Males 3 inordertoadministerasamplemoreconvenientlyortolowercostforthesurvey Mailsurvey Personalinterview Telephoneinterview 4 toproducemorepreciseestimatesforthewholepopulation ifdonecorrectly BloodPressure byage ConcentrationofPlants bytypeofterrain Youngsters theMiddle aged Woodland Marsh Dotages Dryland 4 2TheoryofStratifiedSamplingDefinition Instratifiedrandomsampling thesimplestformofstratifiedsampling WeindependentlytakeanSRSfromeachstratumsothatnhobservationsarerandomlyselectedfromthepopulationunitsinstratumh DefineShtobethesetofnhunitsintheSRSforstratumh NotationforStratificationThepopulationsizeis valueofjthunitinstratumh populationtotalinstratumh overallpopulationtotal populationmeaninstratumh overallpopulationmean populationvarianceinstratumh Thecorrespondingquantitiesforthesampleare Curlicue adecorativecurlortwistincalligraphyorinthedesignofanobject Thenwehavetheestimationforthepopulationas andThepropertiesoftheseestimatorsfollowdirectlyfromthepropertiesofSRSestimators Unbiasedness Varianceoftheestimators Varianceestimatorsforstratifiedsamples 4 3SamplingWeightsDenote samplingweight and samplingfraction Thenweget andthus 4 4AllocatingObservationstoStrata4 4 1ProportionalAllocationAnallocationmethodistoletthenumberofsampledunitineachstratumbeproportionaltothesizeofthecorrespondingstratum Theprobabilityofselection hjisthesamen Nforallstrata sinceAsforSRS wehave PopulationANOVAtable ThereforeIfonly Thefollowingwillhold Virtually witharelativelylargerstratumsize wehaveAndthisresultsin 4 4 2OptimalAllocationLetand Weget Wesampleheavilywithinastratumif Thestratumaccountsforalargepartofthepopulation Thevariancewithinthestratumislarge wesamplemoreheavilytocompensatefortheheterogeneity Samplinginthestratumisinexpensive 4 4 4DeterminethesamplesizeofthepopulationSince Ifthefpc sarenegligibleandifthenormalapproximationisvalid theCIcanbe Supposetheabsoluteerroris i e wethenhave Practically theinthevwillbesubstitutedwith CHAPTER5ClusterSamplingwithEqualProbabilitiesRelativeConcepts ClusterPrimarysamplingunits psu s Secondarysamplingunits ssu s Definition seetheexampleonthetextbookWhydoweuseClusterSampling 1 Constructingsamplingframelistofobservationunitsmaybedifficult expensive orimpossible2 Thepopulationmaybewidelydistributedgeographicallyandmayoccurinnaturalclusterssuchashouseholdsorschools SimilaritiesanddifferencesbetweenstratumandclusterSimilaritiesbothareagroupingofthemembersofthepopulation Differences 1 forstratasampling selectanSRSsampleunitswithineverystratum forstratasampling selectanSRSclustersfromthepopulation theunitsineachclusterconstitutingthewholesample 2 Instratifiedsamplingcase thesamplingmayincreasetheprecision whereasinclustersampling thesamplingmaydecreasetheprecision butmayresultinmoreinformationperdollarspent 5 1NotationforClusterSamplingyij measurementforjthelementinithpsupsulevel populationquantities N numberofpsu sinthepopulationMi numberofssu sinithpsu totalnumberofpsu sinthepopulation totalintheithpsu s populationtotal populationvarianceofthepsutotalssulevel populationquantities populationmean populationmeanintheithpsu populationvariance perssu populationvariancewithintheithpsuSampleQuantities n

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论