顶针固定板A2.gif
顶针固定板A2.gif

吸尘器万向轮注射模具设计【15张CAD图纸+说明书资料齐全】

收藏

资源目录
跳过导航链接。
吸尘器万向轮注射模具设计【15张CAD图纸说明书资料齐全】.zip
压缩包内文档预览:
预览图
编号:62439005    类型:共享资源    大小:4.36MB    格式:ZIP    上传时间:2020-03-27 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
15张CAD图纸+说明书资料齐全 吸尘器 万向轮 注射 模具设计 15 CAD 图纸 说明书 资料 齐全
资源描述:

请充值后下载本设计,,资源目录下的文件,都可以点开预览到,,资料完整,充值下载就能得到。。。【注】:dwg后缀为CAD图,doc,docx为WORD文档,有不明白之处,可咨询QQ:414951605

内容简介:
毕业设计(论文)基于 PRO/E 的某款吸尘器万向轮注射模具设计A INJECTION PLASTIC MOULD DESIGN OF RELEASE CARDAN WHELL OF ONE KIND OF DUST COLLECTOR BASED ON PRO/E I摘要在现代工业中,模具工业已经成为制造业的基础,这一观点随着全球制造业向我国转移的过程中被越来越多的有识之士所意识到。而在模具行业中塑料模又是其重中之重,此种模具占模具行业值的 50%以上,我国的塑料成型模具设计,制作技术比较晚,整体水平还比较低。目前单型腔、简单型腔的模具达 70%以上,占主导地位。本论文介绍了吸尘器万向轮注射模具的设计过程。从万向轮的测绘,PRO/E 的三维建模,分型面的确定,型腔数目和布局的确定,注射机选择,浇注系统设计,冷却系统设计,模板及其标准件的选用,脱模机构的设计,成型部件的设计等一一进行了详细的介绍。 塑件的中心圆柱内有四个小的加强筋,难加工,是本设计的难点,需要用到型芯镶件。通过本设计,可以对注射模具有一个初步的认识,模架的结构及其动作原理都有了一定的了解。注射模是安装在注射机上的,因此在设计注射模时应该对注射机的有关技术规范进行必要的了解,以便设计出符合要求的模具,同时选定合适的注射机型号。关键词关键词 注射模;模具设计;PRO/E;模架II AbstractIn modern industry, die industry has become the basis of manufacturing,this view as the process of the global manufacturing transfer to China being awared by more and more insightful people. The plastic mould is top priority in the die industry, such mould of the die industry production value over 50 percent. Chinas plastic mold design, production technology relatively late, the overall level is still relatively low.At present, single-cavity and simple cavity of the mold more than 70 percent, its dominated.This paper introduced the design process of carden-whell of dust collector. Introduction from the carden-whells modeling, determined of parting face, determined of the cavitys number and layout,choiced of injection,designed of pouring system,designed of cooling system,choiced of follow board and standard unit,designed of mould emptier,designed of forming part and so on. Plastics center has four litter dabber, difficult processing,design become difficulty, need using core inserts.Through this design,I can have a preliminary understanding of the injection mold ,the die carriers frame and action principle.Understanding the selected of die carrier and injection machine need through to calculation the various size and check the Strength.Keywords Plastic injection mould Mould design PRO/E Die carrier1目目 录录1 绪论.11.1 模具在加工工业中的地位.11.2 模具的发展趋势.11.3 万向轮设计的基本要求.22 产品技术要求和工艺分析.32.1 产品技术要求.32.1.1 万向轮的测绘.32.1.2 万向轮的三维建模.32.1.3 脱模斜度.52.1.4 万向轮设计的技术要求.52.2 塑件的工艺分析.52.2.1 塑件结构的工艺性.52.2.2 塑件工艺性分析.52.3 塑件材质工艺性.52.4 成型工艺性.73 确定模具的结构形式.83.1 分型面位置的确定.93.2 成型方案的列出.103.2.1 方案一.103.2.2 方案二.113.3 成型方案的选定.113.4 型腔数目和排列方式的确定.113.4.1 型腔数目的确定.123.4.2 腔排列方式的确定.123.5 注塑机的选择.133.5.1 注塑机的结构类型.133.5.2 ABS 塑料注塑工艺分析.143.6 注射成型原理及工艺.153.6.1 注射成型原理及注射机.163.6.2 注射成型工艺过程.173.6.3 选择注塑机.173.6.4 注射机的校核.1924 浇注系统的设计.204.1 浇注系统的设计原则.204.2 主流道.204.3 分流道.214.4 冷料穴.224.5 浇口.224.6 剪切速率的校核.235 模具温度调节系统.245.1 温度调节对塑件质量的影响.245.2 温度调节对生产力的影响.245.3 冷却水道的概述.255.4 冷却水道设计.255.5 冷却水道形式.266 成型零件的设计及计算.276.1 凹模的设计.276.1.1 凹模工作尺寸的计算.276.2 凸模的设计.276.2.1 凸模工作尺寸的计算.286.2.2 凸模的加工特点.287 模架的确定.297.1 模板尺寸的确定.297.2 注塑机校核.307.2.1 喷嘴尺寸校核.307.2.2 定位圈尺寸校核.307.2.3 模具外形尺寸校核.307.2.4 模具厚度校核.307.2.5 模具安装尺寸校核.317.2.6 开模行程校核.318 排气及脱模机构的设计.328.1 排气系统设计.328.1.1 排气设计原则.328.1.2 推杆、镶件排气功能的证明.328.2 脱模机构的设计.338.2.1 脱模力的计算.338.2.2 推杆脱模机构.3539 合模导向和定位机构.38结论.40致谢.41参考文献.42附录.43附录 1.43毕业设计(论文)基于 PRO/E 的某款吸尘器万向轮注射模具设计A INJECTION PLASTIC MOULD DESIGN OF RELEASE CARDAN WHELL OF ONE KIND OF DUST COLLECTOR BASED ON PRO/E 摘要在现代工业中,模具工业已经成为制造业的基础,这一观点随着全球制造业向我国转移的过程中被越来越多的有识之士所意识到。而在模具行业中塑料模又是其重中之重,此种模具占模具行业值的 50%以上,我国的塑料成型模具设计,制作技术比较晚,整体水平还比较低。目前单型腔、简单型腔的模具达 70%以上,占主导地位。本论文介绍了吸尘器万向轮注射模具的设计过程。从万向轮的测绘,PRO/E 的三维建模,分型面的确定,型腔数目和布局的确定,注射机选择,浇注系统设计,冷却系统设计,模板及其标准件的选用,脱模机构的设计,成型部件的设计等一一进行了详细的介绍。 塑件的中心圆柱内有四个小的加强筋,难加工,是本设计的难点,需要用到型芯镶件。通过本设计,可以对注射模具有一个初步的认识,模架的结构及其动作原理都有了一定的了解。注射模是安装在注射机上的,因此在设计注射模时应该对注射机的有关技术规范进行必要的了解,以便设计出符合要求的模具,同时选定合适的注射机型号。关键词关键词 注射模;模具设计;PRO/E;模架I AbstractIn modern industry, die industry has become the basis of manufacturing,this view as the process of the global manufacturing transfer to China being awared by more and more insightful people. The plastic mould is top priority in the die industry, such mould of the die industry production value over 50 percent. Chinas plastic mold design, production technology relatively late, the overall level is still relatively low.At present, single-cavity and simple cavity of the mold more than 70 percent, its dominated.This paper introduced the design process of carden-whell of dust collector. Introduction from the carden-whells modeling, determined of parting face, determined of the cavitys number and layout,choiced of injection,designed of pouring system,designed of cooling system,choiced of follow board and standard unit,designed of mould emptier,designed of forming part and so on. Plastics center has four litter dabber, difficult processing,design become difficulty, need using core inserts.Through this design,I can have a preliminary understanding of the injection mold ,the die carriers frame and action principle.Understanding the selected of die carrier and injection machine need through to calculation the various size and check the Strength.Keywords Plastic injection mould Mould design PRO/E Die carrier目目 录录1 绪论11.1 模具在加工工业中的地位11.2 模具的发展趋势11.3 万向轮设计的基本要求22 产品技术要求和工艺分析32.1 产品技术要求32.1.1 万向轮的测绘32.1.2 万向轮的三维建模32.1.3 脱模斜度52.1.4 万向轮设计的技术要求52.2 塑件的工艺分析52.2.1 塑件结构的工艺性52.2.2 塑件工艺性分析52.3 塑件材质工艺性52.4 成型工艺性73 确定模具的结构形式83.1 分型面位置的确定93.2 成型方案的列出103.2.1 方案一103.2.2 方案二113.3 成型方案的选定113.4 型腔数目和排列方式的确定113.4.1 型腔数目的确定123.4.2 腔排列方式的确定123.5 注塑机的选择133.5.1 注塑机的结构类型133.5.2 ABS 塑料注塑工艺分析143.6 注射成型原理及工艺153.6.1 注射成型原理及注射机163.6.2 注射成型工艺过程173.6.3 选择注塑机173.6.4 注射机的校核19I4 浇注系统的设计204.1 浇注系统的设计原则204.2 主流道204.3 分流道214.4 冷料穴224.5 浇口224.6 剪切速率的校核235 模具温度调节系统245.1 温度调节对塑件质量的影响245.2 温度调节对生产力的影响245.3 冷却水道的概述255.4 冷却水道设计255.5 冷却水道形式266 成型零件的设计及计算276.1 凹模的设计276.1.1 凹模工作尺寸的计算276.2 凸模的设计276.2.1 凸模工作尺寸的计算286.2.2 凸模的加工特点287 模架的确定297.1 模板尺寸的确定297.2 注塑机校核307.2.1 喷嘴尺寸校核307.2.2 定位圈尺寸校核307.2.3 模具外形尺寸校核307.2.4 模具厚度校核307.2.5 模具安装尺寸校核317.2.6 开模行程校核318 排气及脱模机构的设计328.1 排气系统设计328.1.1 排气设计原则328.1.2 推杆、镶件排气功能的证明328.2 脱模机构的设计338.2.1 脱模力的计算338.2.2 推杆脱模机构35II9 合模导向和定位机构38结论40致谢41参考文献42附录43附录 14301 绪论1.1 模具在加工工业中的地位模具是利用其特定形状去成型具有一定的形状和尺寸制品的工具。在各种材料加工工业中广泛的使用着各种模具。例如金属铸造成型使用的砂型或压铸模具、金属压力加工使用的锻压模具、冷压模具等各种模具。对模具的全面要求是:能生产出在尺寸精度、外观、物理性能等各方面都满足使用要求的公有制制品。以模具使用的角度,要求高效率、自动化操作简便;从模具制造的角度,要求结构合理、制造容易、成本低廉。模具影响着制品的质量。首先,模具型腔的形状、尺寸、表面光洁度、分型面、进浇口和排气槽位置以及脱模方式等对制件的尺寸精度和形状精度以及制件的物理性能、机械性能、电性能、内应力大小、各向同性性、外观质量、表面光洁度、气泡、凹痕、烧焦、银纹等都有十分重要的影响。其次,在加工过程中,模具结构对操作难以程度影响很大。在大批量生产塑料制品时,应尽量减少开模、合模的过程和取制件过程中的手工劳动,为此,常采用自动开合模自动顶出机构,在全自动生产时还要保证制品能自动从模具中脱落。另外模具对制品的成本也有影响。当批量不大时,模具的费用在制件上的成本所占的比例将会很大,这时应尽可能的采用结构合理而简单的模具,以降低成本。现代生产中,合理的加工工艺、高效的设备、先进的模具是必不可少是三项重要因素,尤其是模具对实现材料加工工艺要求、塑料制件的使用要求和造型设计起着重要的作用。高效的全自动设备也只有装上能自动化生产的模具才有可能发挥其作用,产品的生产和更新都是以模具的制造和更新为前提的。由于制件品种和产量需求很大,对模具也提出了越来越高的要求。因此促进模具的不断向前发展。1.2 模具的发展趋势近年来,模具增长十分迅速,高效率、自动化、大型、微型、精密、高寿命的模具在整个模具产量中所占的比重越来越大。从模具设计和制造角度来看,模具的发展趋势可分为以下几个方面:1.加深理论研究在模具设计中,对工艺原理的研究越来越深入,模具设计已经有经验设计阶段逐渐向理论技术设计各方面发展,使得产品的产量和质量都得到很大的提高。2.高效率、自动化大量采用各种高效率、自动化的模具结构。高速自动化的成型机械配合以先进的模具,对提高产品质量,提高生产率,降低成本起了很大的作用。3.大型、超小型及高精度1由于产品应用的扩大,于是出现了各种大型、精密和高寿命的成型模具,为了满足这些要求,研制了各种高强度、高硬度、高耐磨性能且易加工、热处理变形小、导热性优异的制模材料。4.革新模具制造工艺在模具制造工艺上,为缩短模具的制造周期,减少钳工的工作量,在模具加工工艺上作了很大的改进,特别是异形型腔的加工,采用了各种先进的机床,这不仅大大提高了机械加工的比重,而且提高了加工精度。11.3 万向轮设计的基本要求吸尘器是日常使用的电子产品之一,吸尘器底部万向轮是该机器上的关键零部件之一,其结构形式关系整台吸尘器能否灵活运动。该设计要求根据提供的零件实物进行测绘,利用 PRO/E 软件绘制出该零件的 3D 图,并利用 PRO/E 完成该零件整副模具的 3D设计,结合 AutoCAD 完成模具的 2D 总装图及零部件设计。22 产品技术要求和工艺分析2.1 产品技术要求2.1.1 万向轮的测绘用游标卡尺测出零件各部分的尺寸,在测量时要正确的使用游标卡尺,比如我用的卡尺的精度是 0.02。测量完尺寸后,就可以进行三维建模了,为了能够方便而醒目的表达出零件各个部分的尺寸大小,在这我又用 AUTOCAD 绘出了零件图,如图 2-1。图 2-1 万向轮的 CAD 图以上便是万向轮的二维图,绘图比例为 2:1,材料 ABS,从图中可以非常直观的看出零件的各个部分的尺寸及其内部结构.这样方便我以下的三维建模。2-32.1.2 万向轮的三维建模在用 PRO/E 进行三维绘图时,我用的方法是曲面造型,先构造曲线,当然在构造曲线时,应先确定好曲线的位置及其尺寸,在绘制时,我先绘制万向轮结构的一半,然后再通过镜像的方法,完成了曲线绘制后,选用边界混合的命令,连接各个曲线,连接好后,会形成一个曲面,这样将曲面选中,再选取一个基准面,完成镜像.这样万向轮的外部曲面结构便形成了,其次就要进行曲面的加厚,从 CAD 图纸中不难看出曲面的厚度是 3mm.完成加厚命令后,便可以绘制万向轮的内部结构,通过旋转绘制出内部的圆柱,这里的难点就是绘制出加强径结构,我采用的是拉伸切除的方法,逐个绘出,当然还有很多其他的方法,比如画出一个旋转加强筋,然后镜像.圆柱,加强筋都绘制出以后,其他结构都是采用拉伸切除的方法.这样三维建模具完成.设计图如下所示:3图 2-2 万向轮的俯视图图 2-3 万向轮的仰视图完成后进行曲率分析,分析结果如下图所示。图 2-4 万向轮的曲率分析42.1.3 脱模斜度由于塑件成型时冷却过程中产生收缩,使其紧箍在凸模或型芯上,为了便于脱模,防止塑件表面在脱模时出现顶白、顶伤、划伤等,在塑件设计时应考虑其表面具有合理的脱模斜度。塑件上的脱模具斜度的大小,与塑件的性质、收缩率、摩擦因数、塑件壁厚和几何形状有关。因此,在选择脱模斜度时,应该注意以下几点:1)凡塑件精度要求高时,应采用较小的脱模斜度;2)凡较高、较大的塑件尺寸、应选用较小的脱模斜度;3)塑件形状复杂的、不易脱模的,应选用较大的脱模斜度;4)塑件的收缩率大的应选用较大的脱模斜度值;5)塑件壁较厚时,会使成型收缩率增大,脱模斜度应采用较大的数值;6)如果要求脱模后塑件保持在型芯的一边,那么塑件的内表面的脱模斜度可选得比外表面小;反之,要求脱模后塑件留在凹模内,则塑件外表面的脱模斜度应小于内表面。2.1.4 万向轮设计的技术要求塑料零件的材料为ABS,其表面要求无凹痕。尺寸要求属于中等精度等级,在模具设计和制造过程中要严格保证这些尺寸的精度要求。2.2 塑件的工艺分析2.2.1 塑件结构的工艺性万向轮的尺寸如图2-1所示,底部示一个封闭的圆环,外圆直径为31mm,内圆直径为30mm。中间部分是一个圆柱,在其内部有四个分布均匀的小加强筋,厚度分别为1.00mm和1.5mm。周围是分布均匀的加强筋,间隔为60。万向轮属于外部配件,表面要求精度较高,尺寸要求精度一般。2.2.2 塑件工艺性分析(1)该塑件尺寸较小且要求塑件表面精度等级较高,无凹痕,采用矩形浇口单分型面型腔注射模可以保证其精度。(2)该塑件为大批量生产,且塑件的形状不算太复杂,模具一般都采用上下分模的方法,一模四腔满足生产需求。2.3 塑件材质工艺性塑料的基本性能包括力学性能、热性能、电学性能、光学性能、耐老化性能、卫生性能、耐磨性、抗疲劳性、抗蠕变性等。但这里设计重点是讨论与成型加工有关的性能。本设计所涉及的模具可用于成型热塑件塑料、热塑性和热固性增强塑料、热固性塑料、5弹性体(包括热塑性弹性体等) ,下面对直接影响模具设计的成型加工性能分别加以叙述。图 2-5 影响制品注塑成型的主要因素(1)收缩率:各类材料收缩率大小顺序为:弹性体纤维增强或填料填充的弹性体热塑性塑料纤维增强或填料填充的热塑性塑料热固性塑料纤维增强或填料填充的热固性塑料。软质弹性体收缩率大于硬质弹性体,软质热塑性塑料收缩率通常大于硬质热塑性塑料。材料的收缩率在很大程度上决定了制品所能达到的精度,影响模具浇注系统和成型零件设计,有时甚至决定了注塑工艺方法和模具类型,比如收缩率大的塑料不能用于精密注塑。塑件的收缩率具有复杂性和多变性,因为影响收缩率的因素除配方和注塑工艺条件外,还有与模具交口设计(数量、位置、形状、尺寸) 、塑件壁厚、型腔中的拐角、加强筋、嵌件、型芯结构尺寸有关。制品成型过程的收缩率通常有以下几个部分决定:熔体充满型腔后有熔体到固体阶段的熔体冷却收缩(对热塑性塑料)和固化相变收缩,这一部分收缩量较大,但由于保压过程补充了收缩量,所以模具设计不考虑这一部分收缩。塑件固化后在模内及模外冷却到室温的收缩,即由线胀系数决定的收缩,这一相比较简单,可以测出。由结晶(对结晶性聚合物)引起的收缩。由取向引起的收缩。后两项变化无常,他们随注塑工艺条件,浇口形状、尺寸、数量和布置、型腔形状结构尺寸,冷却速度(对热塑性材料)或交联固化速度等因素而变化,设计时需要结合经验和试验确定。(2)流动性:在浇注充模时,热固性塑料和部分热塑性塑料流动性较好,弹性体和大多数热塑性塑料流动性中等或较差。物料的流动性相对模具细节设计有诸多影响,浇6注系统形式,浇口形状、尺寸、数量和布置,配合间隙,排气问题等设计都与流动性有关,冷却或加热系统、型腔形状与壁厚等因素又能影响物料的流动性,从而影响上述细节设计。流动性的好坏涉及到流动过程中在流动通道各处剪切梯的大小,即影响到取向,进而影响收缩率的变化。设计是需要把物的重点:一是分析充模过程物料流动方向,二是流动性对模具设计细节的影响范围和影响程度。流动性好,则浇注系统阻力可以大一些,成型零件之间配合精度要高一些,排气问题需要特别考虑。流动性差,则要尽可能减少浇注系统阻力,对配合精度和排气要求不高,但冷却系统的设计需要注意,过度冷却会影响充模及熔接强度。(3)结晶性:结晶通常是对具有结晶性的热塑性塑料弹性体(包括橡胶)而言。结晶问题主要影响制品的收缩率,不同材料有不同的收缩率,同一种材料的收缩率受配方、注塑工艺条件、模具温度和冷却速度、制品出模温度、制品脱模后的冷却环境和条件、制品冷却到室温后的存放时间影响变化。与结晶相关的模具设计细节主要是冷却系统设计,即冷却要均匀有效,以确保塑件在完成大部分结晶后脱模,因为制品在模内冷却收缩是夹持冷却收缩,有利于尺寸稳定,而在模外冷却是自由收缩,难以确保制品形状和尺寸的稳定,特别是一些塑料的后结晶现象明显,如聚乙烯塑件,在模外冷却到室温后的几天内仍会因缓慢结晶而收缩。(4)热敏性:热固性塑料、部分热塑性塑料、橡胶在注塑过程中对热有不同程度的敏感性,这里的热对磨具设计而言有两方面的含义:剪切生热和长时间受热。剪切生热主要关系到浇注系统设计特别是浇口形状、尺寸、数量和浇口布置,比如使用点浇口时,浇口数量越多,剪切就越弱,剪切发热就越少。受热时间的长短主要关系到浇道设计是否合理,是否能最大限度地减少树脂的滞带量和滞留时间。(5)热性能与固化特性:热塑性塑料和塑性弹性体的熔点(或熔体流动温度) 、结晶温度、热变形温度影响模具冷却系统的设计,热固性塑料和橡胶固化特性影响模具加热系数的设计。此外,制品脱模时的软、硬、脆特性将直接影响模具脱模顶出系统的结构形式和尺寸的设计。在本设计中万向轮所用的材料是ABS。查相关手册可知:ABS由丙烯腈,丁二烯和苯乙烯三种化学单体合成的。每种单体都具有不同特性:丙烯腈具有高的强度,热稳定性及化学稳定性;丁二烯具有坚韧性,抗冲击性;苯乙烯具有高光洁度及高强度,易加工。从形态上看,ABS是非结晶性材料。三种单体的聚合产生了具有两相的三元共聚物,一个是苯乙烯-丙烯腈的连续相,另一个是聚丁二烯橡胶分散相。ABS的特性主要取决于三种单体的比例以及两相中的分子结构。这种通用塑料易于成型和机械加工,具有优良的物理力学性能和低温抗冲击性能,良好的电性能,耐磨性,尺寸稳定性,耐化学性,染色性,优良的流动性,综合性能良好,成型工艺性好。42.4 成型工艺性7ABS的成型特性如下:ABS表面极易吸湿,而使成型塑件表面出现斑痕,云纹等缺陷,含水量应小于0.3%,因此,成型之前必须干燥。ABS的比热容低,在注塑机中能很快加热,因而塑化效率高,在模具中固化比较快,故模塑周期短。ABS的表观黏度强烈的依赖于剪切速率,因此模具中大都采用点浇口的形式。ABS为非结晶高聚物,故成型收缩率小。ABS熔融温度低,熔融温度范围宽,流动性好,有利于成型。表 2-1 ABS 塑料主要的性能指标密度(Kgdm3)1.131.14收缩率%0.30.8熔 点130160热变形温度45N/cm6598弯曲强度MPa80拉伸强度MPa3549拉伸弹性模量GPa1.8弯曲弹性模量GPa1.4压缩强度MPa1839缺口冲击强度kJ/1120硬 度HRR6286体积电阻系数cm101383 确定模具的结构形式3.1 分型面位置的确定分开模具取出塑料制品的面,通称分型面。注射模有一个分型面和多个分型面的模具。分型面的位置有垂直于开模方向,平行于开模方向以及倾斜于开模方向几种。分型面的形状有平面和曲面等。如何确定分型面,需要考虑的因素比较复杂。由于分型面受到塑件在模具中的成型位置、浇注系统设计、塑件的结构工艺性及精度、嵌件位置形状以及推出方法、模具的制造、排气、操作工艺等多种因素的影响,因此在选择分型面时应综合分析比较,从几种方案中优选出较为合理的方案。选择分型面时一般应遵循以下几项原则:a)保证塑料制品能够脱模 这是一个首要原则,因为我们设置分型面的目的,就是为了能够顺利从型腔中脱出制品。根据这个原则,分型面应首选在塑料制品最大的轮廓线上,最好在一个平面上,而且此平面与开模方向垂直。分型的整个廓形应呈缩小趋势,不应有影响脱模的凹凸形状,以免影响脱模。 b)使型腔深度最浅 模具型腔深度的大小对模具结构与制造有如下三方面的影响1)目前模具型腔的加工多采用电火花成型加工,型腔越深加工时间越长,影响模具生产周期,同时增加生产成本。 2)模具型腔深度影响着模具的厚度。型腔越深,动、定模越厚。一方面加工比较困难;另一方面各种注射机对模具的最大厚度都有一定的限制,故型腔深度不宜过大。3)型腔深度越深,在相同起模斜度时,同一尺寸上下两端实际尺寸差值越大。若要控制规定的尺寸公差,就要减小脱模斜度,而导致塑件脱模困难。因此在选择分型面时应尽可能使型腔深度最浅。c)使塑件外形美观,容易清理 尽管塑料模具配合非常精密,但塑件脱模后,在分型面的位置都会留有一圈毛边,我们称之为飞边。即使这些毛边脱模后立即割除,但仍会在塑件上留下痕迹,影响塑件外观,故分型面应避免设在塑件光滑表面上。如图2-3,分型面设置在圆环底部,这样就不会影响产品的外观。d)尽量避免侧向抽芯塑料注射模具,应尽可能避免采用侧向抽芯,因为侧向抽芯模具结构复杂,并且直接影响塑件尺寸、配合的精度,且耗时耗财,制造成本显著增加,故在万不得己的情况9下才能使用。e)使分型面容易加工 分型面精度是整个模具精度的重要部分,力求平面度和动、定模配合面的平行度在公差范围内。因此,分型面应是平面且与脱模方向垂直,从而使加工精度得到保证。如选择分型面是斜面或曲面,加工的难度增大,并且精度得不到保证,易造成溢料飞边现象。g)使侧向抽芯尽量短 抽芯越短,斜抽移动的距离越短,一方面能减少动、定模的厚度,减少塑件尺寸误差;另一方面有利于脱模,保证塑件制品精度 。h)有利于排气 对中、小型塑件因型腔较小,空气量不多,可借助分型面的缝隙排气。因此,选择分型面时应有利于排气。按此原则,分型面应设在注射时熔融塑料最后到达的位置,而且不把型腔封闭。综上所述,选择注射模分型面影响的因素很多,总的要求是顺利脱模,保证塑件技术要求,模具结构简单制造容易。当选定一个分型面方案后,可能会存在某些缺点,再针对存在的问题采取其他措施弥补,以选择接近理想的分型面。依据以上原则,在PRO/E中对塑件进行拔模检测,得到结果如图3-1。图 3-1 基于 PRO/E 的拔模检测分析结果通过结果分析,可以基本确定分型面的位置。6-73.2 成型方案的列出对于设计万向轮注塑模具,有以下两种方案可供选择。103.2.1 方案一(1)分型面:圆环底部为分型面;(2)型腔布置:采用一模两腔;(3)浇注系统:从内侧进浇;(4)排气:分型面排气;(5)模温调节:自然冷却;(6)抽芯机构:中间分模,盲孔和圆柱上下抽芯。3.2.2 方案二(1)分型面:圆环底部为分型面;(2)型腔布置:采用一模四腔;(3)浇注系统:采用潜伏式点浇口;(4)排气:分型面排气;(5)模温调节:自然冷却;(6)抽芯机构:不需抽芯,上下脱模即可。3.3 成型方案的选定对比两个成型方案,最终选定方案二。这是因为:方案一中从内侧进浇。万向轮属于薄壁零件,从内侧直接进浇虽然可以保证其表面光滑,但由于注射压力直接作用于塑件上,容易在进料处产生较大的残余应力而导致塑件翘起变形。型腔布置采用一模两腔,当然,从模架的大小上来说,这是允许的,不过万向轮属于大批量生产,设置为一模四腔,这样更容易节约成本。因而采用方案二。另外,方案一的抽芯机构不好设置。方案二可以采用自动推出塑件,不需抽芯,即可使塑件顺利脱模,而方案二抽芯机构较为复杂,很难实现自动抽芯,生产成本高。综上所述,最终确定的成型方案为方案二。在PRO/E中总的来说可以利用模具模块自带的工具进行分型面设计,如裙边曲面,利用侧面影像曲线等来设计分型面,使其在可以成功的进行仿真开模。分模后的分型面如图3-2。11图 3-2 塑件的分型面3.4 型腔数目和排列方式的确定3.4.1 型腔数目的确定注塑模的型腔数目,可以是一模一腔,也可以是一模多腔,主要是根据制品的投影面积,几何形状(有无侧抽芯) ,制品精度,批量以及经济效益来确定。在型腔数目的确定时主要考虑以下几个有关因素:1)制品重量和注射机的注射量;2)制品的投影面积与注射机的锁模力;3)模具外形尺寸与注射机安装模具的有效面积;4)制品精度;5)制品颜色;6)制品的有无侧抽芯及其处理方法;7)制品的生产批量;8)经济效益;以上的这些因素有时是互相制约的,因此在确定设计方案时,必须进行协调。在具体确定模具型腔数目的时候,有多种计算公式,现根据注塑机的最大注射量确定型腔数目: 式(3.1)12)8 . 0(WWGn式中 n表示为型腔的数目;G表示为注塑机的最大注塑量;为单个制品的质量;1W为浇注系统的质量。2W根据上式,拟选用注塑机的最大注射量为 20g,在 PRO/E 环境分析得到塑件的质量属性为 3.29g() ,由于塑件较小,拟取浇注系统的质量为塑件质量的30.6 /g cm2W12100%。代入上式为: 式(3.2)3.863.293.29208 . 0()n此时,取n值为4,得到的型腔数目为4。3.4.2 腔排列方式的确定型腔数量确定以后,便进行型腔的排列,即型腔位置的布置。型腔的排列涉及模具尺寸、浇注系统的设计、浇注系统的平衡、抽芯机构的设计、镶件及型芯的设计以及冷却系统的设计。以上这些问题又与分型面及浇口位置的选择有关,所以在具体设计过程中,要进行必要的调整,以达到较完美的设计。8型腔排列方式可以分为平衡式和非平衡式,平衡式可以保证各型腔同时充满塑料,非平衡式浇注时则不能同时使各型腔充满塑料,为此应修正进料口厚度或者长度,对远离浇口的型腔填充慢,注入塑料量少,则应该增大进料口的厚度或减少进料口的长度,以使各型腔同时充满。考虑了以上个方面的因素,此塑件将采用平衡式,在PRO/E设计如图3-3。图 3-3 型腔的排列方式3.5 注塑机的选择3.5.1 注塑机的结构类型目前国产注射机有三种类型,即立式、卧式、90角注射机。由于其结构形式不同,故使用的模具结构也有所差异。所以,在设计注射模时,选用注射机的类型是非常重要的。各种注射机的结构特征及应用见表3-1。表 3-1 注射机结构特点表注射机结构形式简图结构特点适用范围13立式注射机1 注射装置 2定模3动模 4锁模装置注射装置及定模安装在机床上半部,锁模装置及动模顶出机构安装在下部,互成竖立一线排列。其注射装置一般为柱塞式锁模机构为液压机械式。适宜加工中小型塑件及两次进行双色注塑加工的双色件和镶件比较多的塑件。卧式注射机1锁模装置 2动模3定模 4注射装置注射装置与定模固定板为一侧,顶出机构及动模固定板为一侧互为横卧一线排列。注射装置及螺杆推动,进行液压锁模。适应于各种塑件注塑成型,是目前使用最多的注射机。直角式注射机2 注射装置 2定模3动模 4锁模装置注射装置为竖立分布,锁模装置,顶出及定、动模水平卧式排列,互成直角。注射装置为柱塞式,锁模机构为机械式。使用于注射小型零件及塑件中心部分不允许留有浇口痕迹的特殊零件加工,应用不甚广泛。143.5.2 ABS 塑料注塑工艺分析在选择注塑机时要对塑件的材料特性有足够的了解,参考“中国机械CAD论坛”得出ABS注塑时所需的条件:(1)ABS塑料的干燥:ABS塑料的吸湿性和对水分的敏感性较大,在加工前进行充分的干燥和预热,不单能消除水汽造成的制件表面烟花状泡带、银丝,而且还有助于塑料的塑化,减少制件表面色斑和云纹。ABS原料要控制水分在0.13%以下。注塑前的干燥条件是:干冬季节在7580以下,干燥23h,夏季雨水天在8090下,干燥48h,如制件要达到特别优良的光泽或制件本身复杂,干燥时间更长达816h。因微量水汽的存在导致制件表面雾斑是往往被忽略的一个问题。最好将机台的料斗改装成热风料斗干燥器,以免干燥好的ABS在料斗中再度吸潮,但这类料斗要加强湿度监,在生产偶然中断时,防止料的过热。(2)注射温度:ABS塑料的温度与熔融粘度的关系有别于其他无定型塑料。在熔化过程温度升高时,其熔融实际上降低很小,但一旦达到塑化温度(适宜加工的温度范围,如220250),如果继续盲目升温,必将导致耐热性不太高的ABS的热降解反而使熔融粘度增大,注塑更困难,制件的机械性能也下降了。所以,ABS的注射温度虽然比聚苯乙烯等塑料的更要高,但不能像后者那样有较宽松的升温范围。某些温控不良的注塑机,当生产ABS制件到一定数量时,往往或多或少地在制件上发现嵌有黄色或褐色的焦化粒,而且很难利用加新料对空注射等办法将其清除排出。究其原因,是ABS塑料含有丁二烯成分,当某塑料颗粒在较高的温度下牢牢地粘附在螺槽中一些不易冲刷的表面上,受到长时间的高温作用时,造成降解和碳化。既然偏高温操作对ABS可能带来问题,故有必要对料筒各段炉温进行限制。当然,不同类型和构成的ABS 的适用炉温也不同。如柱塞式机,炉温维持在180230 ;螺杆机,炉温维持在160220。特别值得提出的是,由于ABS的加工温度较高, 对各种工艺因素的变化是敏感的。所以料筒前端和喷嘴部分的温度控制十分重要。实践证明,这两部分的任何微小变化都将在制件上反映出来。温度变化越大,将会带来熔接缝、光泽不佳、飞边、粘模、变色等缺陷9。(3)注射压力:ABS熔融件的粘度比聚苯乙烯或改性聚苯乙烯高,所以在注射时采用较高的注射压力。当然并非所有ABS制件都要施用高压,对小型、构造简单、厚度大的制件可以用较低的注射压力。注制过程中,浇口封闭瞬间型腔内的压力大小往往决定了制件的表面质量及银丝状缺陷的程度。压力过小,塑料收缩大,与型腔表面脱离接触的机会大,制件表面雾化。压力过大,塑料与型腔表面摩擦作用强烈,容易造成粘模。(4)注射速度:ABS料采用中等注射速度效果较好。当注射速度过快时,塑料易烧焦或分解析出气化物,从而在制件上出现熔接缝、光泽差及浇口附近塑料发红等缺陷。但在生产薄壁及复杂制件时,还是要保证有足够高的注射速度,否则难以充满。(5)模具温度:ABS的成型温度相对较高,模具温度也相对较高。一般调节模温为157585,当生产具有较大投影面积制件时,定模温度要求7080,动模温度要求5060。在注射较大的、构形复杂的、薄壁的制件时,应考虑专门对模具加热。为了缩短生产周期,维持模具温度的相对稳定,在制件取出后,可采用冷水浴、热水浴或其他机械定型法来补偿原来在型腔内冷固定型的时间。(6)料量控制:一般注塑机注ABS塑料时,其每次注射量仅达标准注射量的75%。为了提高制件质量及尺寸稳定,表面光泽、色调的均匀,要求注射量为标定注射量的50%为宜。3.6 注射成型原理及工艺注射成型又称注射模塑,是热塑性塑料制品的一种主要成型方法,除个别热塑性塑料外,几乎所有的热塑性塑料都可以用此方法成型。注射成型模具占整个塑料模的90%左右。近年来,注射成型已成功地用来成型某些热固性塑料制品。注射成型可成型各种形状的塑料制品,它的特点是成型周期短,能一次成型外形复杂、尺寸精密、带有嵌件的塑料制品,且生产效率高,易于实现自动化生产,所以广泛用于塑料制品的生产中。但是,注射成型的设备及模具制造费用较高,不适合单件及小批量塑件制品的生产。3.6.1 注射成型原理及注射机注射成型的原理是将颗粒状或粉状塑料从注射机的料斗送进加热的料筒中,经过加热熔融塑化成为粘流态熔体,在注射机柱塞或螺杆的高压推动下,以很大的流速通过喷嘴注入模具型腔,经一定时间的保压、冷却定型后可保持模具型腔所赋予的形状,然后开模分型获得成型塑件。10注射成型所用的设备是注射机,所以,必须了解注射机的种类、工作原理和规格。1. 注射机的分类及其工作原理目前注射机的种类有很多,但普遍采用的是柱塞式注射机和螺杆式注射机。1)柱塞式注射机图 3-4 柱塞式注射机运动结构图先将粉状或粒状塑料从注射机的料斗中送进配备加热装置的料筒中,塑化成熔融状16态;然后,在柱塞的推动下,塑料熔体被压缩,并以极快的速度经喷嘴注入到模具型腔中;最后,充满型腔的熔体经过保压、冷却而固化成塑件开模取出,如此即完成一个成型周期。柱塞式注射机结构原理如图3-4所示。2)螺杆式注射机图 3-5 螺杆式注射机结构示意图螺杆式注射机的工作原理如图3-5所示。其闭模、充型、保压、冷却及脱模过程与柱塞式注射机相同。不同的是:螺杆推动其头部聚积的熔体充型时本身只作平移而不转动,当塑件冷却的同时和保压结束以后,螺杆开始转动,由料斗加入的塑料在螺杆带动下,沿螺旋槽向前输送。3.6.2 注射成型工艺过程注射成型工艺过程包括注射前的准备、注射过程和制品的后期处理三个主要阶段,各阶段又可细分为多个小的阶段。1. 注射前的准备为了使注射成型顺利进行,保证塑件质量,一般在注射之前要进行原料预处理、清洗料筒、预热嵌件和选择脱模剂等准备工作。具体的过程如下:(1) 原料的预处理:包括原料的检验、着色和预热干燥等过程;(2) 料筒的清洗;(3) 嵌件的预热:当嵌件为金属时,由于金属与塑料的收缩率相差较大,所以对嵌件要进行预热。(4) 脱模剂的选用:为了便于脱模,生产常使用脱模剂。2. 注射过程完整的注射过程包括加料、塑化、注射、保压、冷却和脱模等几个步骤。3. 塑件的后处理1) 退火处理2) 调湿处理173.6.3 选择注塑机(1)由公称注射量选定注射机由注射量选定注射机.由PRO/E建模分析得到塑件的体积如图3-6所示。图 3-6 塑件的质量和体积参数分析结果得到38cm总V8.5gV总总m(2)由锁模力选定注射机 式(3.3)型分胀锁PAFF=120008N式中 F注射机的锁模力(N) ;锁A塑件和浇注系统在分型面上的投影面积之和; 分P型腔压力,取P= 60MP。型型结合上面两项的计算,初步确定注塑机为表3-2所示,查国产ZF注射机,主要技术参数如下11。表3-2 国产ZF注射机技术参数表单位ZF100ZF110ZF128ZF168螺杆直径mm35424245理论注射容积cm3161182222318理论注射量G145165206290注射速率g/s92102112138注射装置塑化能力g/s1518202518注射压力mm170186204177移模行程mm305320360430拉杆间距mm355315390355415375460440最大模厚mm320400400500最小模厚mm150150150200顶出行程mm7090120150顶出力K/N27304038合模力K/N10001100128016803.6.4 注射机的校核1 最大注塑量的校核为确保塑件质量,注塑模一次成型的塑件质量(包括流道凝料质量)应在公称注塑量的35%75%范围内,最大可达80%,最小不小于10%。为了保证塑件质量,充分发挥设备的能力,选择范围通常在50%80%。V =9.5cm; V70cm;实3公3.6%31100%705 . 9满足要求。2 锁模力的校核 在确定了型腔压力和分型面面积之后,可以按下式校核注塑机的额定锁模力: 式(3.4)FK AP分型1.2 120.2156.72满足要求。式中 F注塑机额定锁模力:810KN;K安全系数,通常取1.11.2,取K=1.2。3 塑化能力的校核由上初定的成型周期为 10 秒计算,实际要求的塑化能力为注射量/成型周期。19即:,小于注塑机的塑化能力,说明注射机完全满足塑化要求。9.50.95( / )10g s7( / )g s注射模的浇注系统是指模具中从注塑机喷嘴开始到型腔入口为止的塑料熔体的流动通道,它由主流道,分流道,冷料穴和浇口组成。它向型腔中的传质,传热,传压情况决定着塑件的内在和外表质量,它的布置和安排影响着成型的难易程度和模具设计及加工的复杂程度,所以浇注系统是模具设计中的主要内容之一12。4 浇注系统的设计4.1 浇注系统的设计原则总的原则是是粘着液的塑料能够平稳顺利地充满型腔,成型完好的塑料制品。保证塑料流体流动稳定,应与排气槽相结合,使塑件在填充时不产生涡流和紊流。使粘流态的塑料流动平稳顺畅,从而获得好的塑件制品。流到内应该平滑但不要太光滑,大约用600号砂纸抛光就可以了。流程应该尽量短。一是减少流道内的塑料。二是要缩短填充时间,减少热量损失,加快生产过程,提高生产效率。尽量避免正面冲击细小型芯和细小嵌件,以免细小型芯弯曲、细小嵌件移位。万以避免不了时,一是改变进料口的角度,即冲塑胶方向;二是将型芯两端固定,将嵌件固定。既要使整修水口方便,又不影响产品外观。进料口要选择合适的位置和形状。防止因为进料位置选择不适合而产生产品产生翘曲变形。如果塑件较小,可以单点进料;如果料件较大,单进料压力小,产品容易翘曲变形或缺塑胶,应改为两点或多点进料。进料位置应该选择适当,应在塑胶位面积较大、塑胶位较厚处,使塑胶易于流动。134.2 主流道主流道是连接注塑机的喷嘴与分流道的一段通道,通常和注塑机的喷嘴在同一轴线上,断面为圆形,有一定的锥度,目的是便于冷料的脱模,同时也改善料流的速度,因20为要和注塑机相配,所以其尺寸与注塑机有关,如图4-1所示:图 4-1 浇口套剖视图主要参数:外部直径50mm;外表面粗糙度Ra=;小端直径20mm;半径R=11mm;0.8um材料T8A。由于主流道要与高温的塑料熔体和喷嘴反复接触和碰撞,所以主流道部分常设计成可拆卸的主流道浇口套,以便选用优质的钢材单独加工和热处理。4.3 分流道 分流道是主流道与浇口之间的通道,一般开设在分型面上,起分流和转向作用,分流道的长度取决于模具型腔的总体布置和浇口位置,分流道的设计应尽可能短,以减少压力损失,热量损失和流道凝料。影响分流道设计的因素:(1)制品的几何形状,壁厚,尺寸大小及尺寸的稳定性,质量及外观质量要求;(2)塑胶的种类,亦即塑胶的流动性,熔融温度与熔融温度区间,固化温度及收缩率;(3)注塑机的压力,加热温度,及注塑速度;(4)主流道及分流道的脱落方式;(5)型腔的布置,浇口位置及浇口形式的选择。对分流道的要求:(1)塑胶流经分流道时压力损失及温度损失要小;(2)分流道的固化时间应稍后于制品的固化时间,以利于压力的传递及保压;(3)保证塑胶迅速而均匀的进入各个型腔;(4)分流道的长度应尽量短,其容积要小;(5)要便于加工及刀具选择;21(6)每节流道要比下一节分流道大 10-20%左右,如图 4-2,D=dx10-20%。图 4-2 分流道的形式常用分流道断面尺寸推荐如表4-1所示。表 4-1 流道断面尺寸推荐值塑料名称分流道断面直径 mm塑料名称分流道断面直径 mmABS,AS4.89.5聚苯乙烯3.510聚乙烯1.69.5软聚氯乙烯3.510尼龙类1.69.5硬聚氯乙烯6.516聚甲醛3.510聚氨酯6.58.0醋酸纤维素510聚砜6.510异质同晶体810聚苯硫醚6.513分流道的断面形状有圆形,矩形,梯形,U形和六角形。要减少流道内的压力损失,希望流道的截面积大,表面积小,以减小传热损失,因此,可以用流道的截面积与周长的比值来表示流道的效率,其中圆形和正方形的效率最高,但正方形的流道凝料脱模困难,所以一般是制成梯形流道。常用分流道的形式及尺寸如图4-3所示:22图 4-3 分流道的形式及尺寸在该模具上取圆形断面形状,直径为4mm。4.4 冷料穴冷料穴一般位于主流道对面的动模板上,或处于分流道末端,其作用是存放料流前端的冷料,防止冷料进入型腔而形成冷接缝,此外,开模时又能将主流道凝料从定模板中拉出,冷料穴的尺寸宜稍大于主流道大端的直径,长度约为主流道大端直径,冷料穴的尺寸如图4-4所示:图 4-4 流道与冷料穴4.5 浇口浇口是连接分流道与型腔的一段细短的通道,它是浇注系统的关键部分,浇口的形状,数量,尺寸和位置对塑件的质量影响很大,浇口的主要作用有两个,一是塑料熔体流经的通道,二是浇口的适时凝固可控制保压时间。浇口的类型有很多,有点浇口,侧浇口,直接浇口,潜伏式浇口等,各浇口的应用和尺寸按塑件的形状和尺寸而定。普通浇口的特点:形状比较简单,加工方便。普通浇口的形式及尺寸如图4-5所示。图 4-5 普通浇口的形式及尺寸4.6 剪切速率的校核生产实践表明,当注射模主流道和分流道的剪切速率R=510 510 S、浇口的剪231切速率R=10 10 S时,所成型的塑件质量最好。对一般热塑性塑料,将以上推荐的剪451切速率值作为计算依据,可用以下经验公式表示:R= 式(4.1)33 . 3nvRq式中 q 体积流量() ;v3/cms23(1)主流道剪切速率校核Q=/T =100.5=20 ()主v实Q3/cms式中 T注射时间,T=0.5(S) ;R 流道的平均当量截面半径;R =0.165() ;nn421dd cmd主流道大端直径;d=0.45() ;22cmR= =S。主33 . 3nvRq3165. 014. 3203 . 331068. 41(2)分流道剪切速率的校核Q =10()12主Q2203/cmsR =0.4() ;1cmR =1.3110 S。133 . 3nvRq34 . 014. 3103 . 331(3)浇口剪切速率的校核R=1.7110 S(R =0.085() )浇3n3 . 3Rqv3085. 014. 3103 . 341n443dd cmR 为潜伏式浇口的均当量截面半径n从以上的计算结果看,流道与浇口剪切速率的值都落在合理的范围内,证明流道与浇口的尺寸取值是合理的。145 模具温度调节系统塑料模具的温度直接影响塑件的成型质量和生产效率。由于各种塑料的性能和成型工艺不同,模具温度也要求不同。因此在设计注塑模具时必须考虑用加热或冷却装置来调节模具的温度。对于一般的热塑性塑料注射成型时只需考虑冷却装置。5.1 温度调节对塑件质量的影响温度调节对塑件质量的影响主要有以下几个方面:a尺寸精度利用温度调节系统来保持模具温度的恒定或采取较低的模温,可减少塑件成型收缩率的波动,提高塑件精度。b形状精度模具型芯与型腔各部分温差过大,会使塑件收缩不均匀而导致翘曲变形,影响塑件的美观和使用。特别对于壁厚不一致和形状复杂的塑件,经常会出现因收缩不均匀而变形的情况,必须采用合适的冷却回路,使模具型腔各个部位的温度基本上均匀。c表面粗糙度模温过低会使塑件轮廓不清晰,产生明显的熔合纹,提高模温可改善塑件的表面状态,使塑件的表面粗糙度降低。13245.2 温度调节对生产力的影响温度调节系统对生产力的影响主要由冷却时间来体现。通常注射到型腔内的塑料熔体的温度为200左右,塑件从型腔中取出的温度在60以下。熔体在成型时释放的热量中约有5%以辐射、对流的形式散发到大气中,其余95%需冷却水带走,否则由于塑料熔体的反复注入将使模温升高。为了保持模温的恒定,在每一循环中,必须由冷却系统把塑料熔体的热量带走。因此模具的冷却时间主要取决于冷却系统的冷却效果。一般的模具冷却时间占整个注射循环周期的2/3,因此缩短成型周期中的冷却时间是提高生产率的关键。根据牛顿冷却定律,冷却系统从模具中带走的热量为: 式(5.1)/3600QkAt 式中 Q模具与冷却系统所传递的热量(J) ;k冷却管道孔壁与冷却介质间的传热系数;2/()oJmhC A冷却介质传热面积(m2) ;模温与冷却介质之间的温度差() ;t冷却时间(S) 。由式中可知,当所需传递的热量不变时,可通过提高传递系数k,提高模具与冷却介质温度差及增大冷却介质的传热面积A等三种方法来缩短冷却时间,提高生产效率。5.3 冷却水道的概述注塑成型时,模具温度直接影响塑胶的填充和塑胶产品的质量,也影响注塑周期。因此在使用模具时必须对模具进行有效的冷却,使模温保持在一定的范围内。要使模具有效的冷却并提高模具的热传导效率,就应做好冷却通道的设计工作。根据经验,要保证模具有效冷却,其冷却通道孔的中线离表面的距离小于冷却通道直径的3倍;冷却通道的中心距约为冷却通道直径的3-5倍。此外,冷却还与制模材料的导热性能有关。模具的冷却方法有水冷却,空气冷却和油冷却等,但常用的是水冷却法。下表是由于不正常模温而造成的塑件的各种缺陷。表5-1 不正常模温而造成的塑件的各种缺陷缺陷模温过低模温过高模温不均塑件不足有尺寸不稳定有表面波纹有25扭曲变形有有裂纹有有表面不光洁有有胶件脆弱有胶件粘模有胶件透明度低有脱模不良有5.4 冷却水道设计1.影响冷却通道设计的因素(1)模具结构形式,如普通塑胶注塑模具,细长型芯塑胶注塑模具以及镶件多的塑胶注塑模具等,对冷却系统设计都有直接影响;(2)模具大小及成型投影面积的大小;(3)浇口和流道的布设及其结构。2.冷却通道设计的基本原则(1)冷却通道离胶壁既不能太远也不能太近,距离太远影响冷却效果,距离太近影响模具的强度,通常其边距为10-18mm;(2)冷却通道的设计和布置应与塑胶制品的厚度相适应。制品厚的部位要着重冷却;(3)冷却通道不应通过镶件和镶件的接缝处,以防漏水;(4)动模和定模要分别冷却,要保持冷却平衡;(5)清楚显示运水途径,标注水道组别如:IN1,OUT1;IN2,OUT2等。有模板接镶件处应注上UP,DOWN.如图所示;(6)冷却水道不宜过长,如太长应分为几组,如图,A只有一组出入水,会造成模具冷却不均匀。而B分为三组,模具冷却均匀,效果较好。图 5-2 冷却水道形式的对比5.5 冷却水道形式26冷却通道的布局,应根据塑胶制品的形状及其所需温度的要求而定。冷却通道的形式可分成:直通式通道,圆周式通道,水柱式通道和循环式通道等。该设计采用的是直通式通道。直通式通道的形式如图所示:图 5-3 直通式水道的形式该设计的水道布置如图5-4所示:图 5-4 模具的水道布置6 成型零件的设计及计算所谓工作尺寸是零件上直接用以成型塑件部分尺寸,主要有型腔和型芯的径向尺寸。(包括矩形和异形型芯的长和宽) ,型腔深度和型芯高度和尺寸。凹,凸模型腔尺寸直接按产品尺寸确定。因ABS的成型收缩率为0.5-0.7%,所以平均收缩率取S=0.6%。6.1 凹模的设计凹模是成型制品的外表面的成型零件。按凹模的构的不同将其分为结整体式、整体嵌入式,组合式和拼镶式四种。根据对塑件的结构分析,本设计中整体嵌入式凹模。6.1.1 凹模工作尺寸的计算凹模是成型塑件外形的模具零件,其工作尺寸属包容尺寸,在使用过程中凹模的磨损会使包容尺寸逐渐变大。因此,为了使得模具的磨损留有修模的余地,以及装配的需要,在设计模具时,包容尺寸尽量取下限尺寸,尺寸公差取上偏差。模具工作尺寸与塑件尺寸的关系如图6-1所示:1)凹模径向尺寸的计算27 式(6.1)113(1)4emcpsLSL式中 L以 R29.12 加工时凹模的径向尺寸;m1L在 R29.12 弧段塑件的径向尺寸;S1制造公差,=;zz3S 塑件的平均收缩率,S=0.005。cpcp 式(6.2)223(1)4emcpsLSL式中 Lm2加工时凹模的径向尺寸;L 塑件的凹模径向尺寸。s2)凹模深度尺寸的计算: 式(6.3)2(1)3emcpsHSH式中 H 塑件的高度尺寸,H =27.3mm 。ss6.2 凸模的设计凸模是成型塑件内表面的成型零件,通常可以分为整体式和组合式两种类型.由于各个产品的形状不同,尺寸不同,导致凸模结构也不相同。凸模按照形状可分为规则形状和不规则形状。规则形状包括圆形,椭圆形,矩形等等。该设计的凸模是不规则的,当然难度也就会增加。凸模的加工方法有电加工,机械加工,和数控加工等等。6.2.1 凸模工作尺寸的计算凸模是成型塑件外形的,其工作尺寸属被包容尺寸,在使用过程中凸摸的磨损会使被包容尺寸变小。因此,为了使得模具的磨损留有修模的余地,以及装配的需要,在设计模具时,被包容尺寸尽量取上限尺寸,尺寸公差取下偏差。6.2.2 凸模和凹模的加工特点凸模和凹模在模具制造中要互相配合,加工间隙小,精度要求很高。287 模架的确定注塑模模架国家标准有两个,即 GB/T125561990塑料注射模中小型模架及其技术条件和 GB/T125551990塑料注射模大型模架 。前者适用于模板尺寸为BL560mm900mm;后者的模板尺寸 BL 为(630mm630mm)(1250mm2000mm) 。由于塑料模具的蓬勃发展,现在在全国的部分地区形成了自己的标准,该设计采用龙记标准模架。基本模架的示意图如下:29图 7-1 基本型模架结构7.1 模板尺寸的确定(1)模仁尺寸的确定因为采用的是整体嵌入式凹模和整体嵌入式凸模,所以模仁的大小可以任意制定,模仁所承受的力最终是传递到凸、凹模上,从节约材料和见效模具尺寸出发,模仁的值取的越小越好,但实际中因为要考虑冷却因素,又因为经过模仁的冷却系统比经过模仁外部的冷却系统效率高,所以为了给冷却系统留有足够的空间。(2)凸、凹模尺寸的确定凸、凹模受力的作用,其尺寸需要进行强度或刚度校核来确定。根据设计要求,只要凹模长边的宽度满足 12mm 就可以达到刚度要求,理论上只要取大于 12mm 的值就满足设计要求,但考虑到导柱和导套、螺钉、冷却水孔等对模架强度、刚度的削弱作用,实际生产中都取比理论值大得多的值。(3)模具高度尺寸的确定各块板的厚度已经标准化,所需要的只是选择,如何选择合理的厚度,这里有个尺寸需要注意。凸模底板厚度和凹模底板厚度;在注射成型时型腔中有很大的成型压力,当塑件和凝料在分型面上的投影面积很大时,若凸模底板厚度不够,则极有可能使模架发生变形或者破坏,所以凸模底板厚度尺寸需要校核才能确定,根据公式知道,厚度满足 46 可满足要求,为了安全,取底板厚度为 50 mm, 。凹模的底板因为是与注塑机的工作台接触的,所受的力传递到工作台上,所以凹模底板的厚度同样只要留有走冷却系统的空间就可以,该设计取凹模底板厚度为 30mm。7.2 注塑机校核7.2.1 喷嘴尺寸校核在实际生产过程中,模具的主流道衬套始端的球面半径 R2 取比注射机喷嘴球面半径30R1 大 12mm,主流道小端直径 D 比注射机喷嘴直径 d 大 0.51mm,如图 7-2 所示,以防止主流道口部积存凝料而影响脱模。所以,注射机喷嘴尺寸是标准,模具的制造以它为准则。图 7-2 喷嘴与浇口套尺寸关系7.2.2 定位圈尺寸校核注塑机固定模板台面的中心有一规定尺寸的孔,称之为定位孔。注塑模端面凸台径向尺寸须与定位孔成间隙配合,便于模具安装,并使主流道的中心线与喷嘴的中心线相重合。模具端面凸台高度应小于定位孔深度。7.2.3 模具外形尺寸校核注塑模外形尺寸应小于注塑机工作台面的有效尺寸。模具长宽方向的尺寸要与注塑机拉杆 间距相适应,模具至少有一个方向的尺寸能穿过拉杆间的空间装在注塑机的工作台面上。7.2.4 模具厚度校核模具厚度必须满足下式: 式(7.1)minmaxmHHH100487540满足要求。式中 H 所设计的模具厚度 246mm;mH注塑机所允许的最小模具厚度 100mm;minH注塑机所允许的最大模具厚度 280mm;max7.2.5 模具安装尺寸校核注塑机的动模板,定模板台面上有许多不同间距的螺钉孔或“T”形槽,用于安装固定模具。模具固定安装方法有两种:螺钉固定,压板固定。采用螺钉直接固定时(大型模具常用这种方法) ,模具动,定模板上的螺孔及其间距,必须与注塑机模板台面上对应的螺孔一致;采用压板固定时(中,小模具多用这种方法) ,只要在模具的固定板附近有螺孔就行,有较大的灵活性。31该模具外形尺寸为 300400 属中,小型模具,所以采用压板固定法(一般认为当尺寸在 500500 内为中,小模具) 。7.2.6 开模行程校核所选注塑机为全液压式锁模机构,最大开模行程受模具厚度影响。此时最大开模行程等于注塑机移动、固定模板台面之间的最大距离减去模具厚度。开S 式(7.2)12(5 10)SHHmm开10015+74+510094满足要求。式中:注塑机移模行程 100;开Smm推出距离 15;1Hmm流道凝料与塑件高度 74。2Hmm8 排气及脱模机构的设计在塑料熔体填充注射模腔过程中,模腔内除了原有的空气外,还有塑料含有的水分在注射温度下蒸发而形成的水蒸汽,塑料局部分解产生的低分子挥发气体,塑料助剂挥发(或化学反应)所产生的气体以及热固性塑料交联硬化释放的气体等;这些气体如果不能被熔融塑料顺利地排出模腔,将在制件上形成气孔,接缝,表面轮廓不清,不能完全充满型腔,同时,还会因为气体被压缩而产生的高温灼伤制件,使之产生焦痕,色泽不佳等缺陷。328.1 排气系统设计模具的排气可以利用排气槽排气,分型面排气,利用型芯,推杆,镶件等的间隙排气从模具设计总体协调性和排气通畅性角度分析,本设计最终将排气系统设置在分型面上。8.1.1 排气设计原则通常,选择排气槽的开设位置时,应遵循以下原则:1)排气口不能正对操作者,以防熔料喷出而发生工伤事故;2)最好开设在分型面上,如果产生飞边易随塑件脱出;3)最好设在凹模上,以便于模具加工和清模方便;4)开设在塑料熔体最后才能填充的模腔部位,如流道或冷料穴的终端;5)开设在靠近嵌件和制件壁最薄处,因为这样的部位最容易形成熔接痕;6)若型腔最后充满部位不在分型面上,其附近又无可供排气的推杆或活动的型心时,可在型腔相应部位镶嵌烧结的多孔金属块,以供排气;7)高速注射薄壁型制件时,排气槽设在浇口附近,可使气体连续排出。8.1.2 推杆、镶件排气功能的证明我们知道,推管和型芯的公差配合取,属于间隙配合,现在计算这个配合的极限78fH间隙。推管外径为 4mm,所以计算。784fH解:的极限偏差787fH查表求得基本尺寸的标准公差 IT8=18,IT7=12。4mm孔、轴的上、下偏差为:基准孔 H8EI=0;ES=EI+IT8=0+18=18m基准轴 f7es=10;ei=esIT7=1012=22m孔、轴的极限偏差分别为:H8,f7718071022的极限间隙为:787fHX=ESei=18(22)=40maxmX=EIes=0(10)=10 minm从计算结果看,间隙在 0.010.04mm 之间,公差带如图所示。相比排气槽的深度0.02,似乎推杆能更好的排气,这也说明了,增加推杆和镶件等可以有利于型腔的排气。33图 8-1 公差带图8.2 脱模机构的设计注射成型每一循环中,塑件必须准确无误地从模具的凹模或型芯上脱出,完成脱出塑件的装置称为脱模机构,也称顶出机构。脱模机构的设计一般遵循以下原则:1)塑件滞留于动模边,以便借助于开模力驱动脱模装置,完成脱模动作。2)由于塑件收缩时包紧型芯,因此推出力作用点尽量靠近型芯,同时推出力应施于塑件刚性和强度最大的部位。3)结构合理可靠,便于制造和维护。本设计使用简单的推杆脱模机构,因为该塑件的分型面简单,结构也不复杂,采用推简单的脱模机构可以简化模具结构,给制造和维护带来方便。在对脱模机构做说明之前,需要对脱模力做个简单的计算。8.2.1 脱模力的计算在计算脱模力的时候,我们可以有以下几种方法:1)对塑件进行理想模型建模,通过建立力学模型,画出力学机构图,通过复杂的力学计算来求出脱模力;2)利用经验公式来计算脱模力。(1)薄壁塑件脱模力的计算当圆形塑件的内孔半径与壁厚之比(矩形塑件)时,塑件称10tr10tba为薄壁塑件。当塑件横断面形状为圆形时,其脱模力计算公式为 式(8.1)AKfrESLF1 . 0)1 ()tan(cos22当塑件横截面形状为矩形时,其脱模力计算公式为:34 式(8.2)AKfrESLF1 . 0)1 ()tan(cos82(2)厚壁塑件脱模力的计算当圆形塑件的内孔半径与壁厚之比(矩形塑件)时,塑件称为10rt10abf厚壁塑件。1 当塑件横截面形状为圆形时,其脱模力计算公式为: 式(8.3)AKKfrESLF1 . 0)1 ()tan(2212 当塑件横截面形状为矩形时,其脱模力计算公式为: 式(8.4)AKKfESLbaF1 . 0)1 ()tan()(221式中 F 为脱模力(N) ;E 为塑件的弹性模量() ;MPaS 为塑料成型的平均收缩率;t 为塑件的壁厚(mm) ;L 为背包型芯的长度;是塑料的泊松比;是脱模斜度;是塑料与刚才之间的摩擦因数;fr 为型芯的平均半径;a 是矩形型芯短边长度;b 是矩形型芯长边长度;A 为塑件在分型面上的投影面积。 式(8.5)2122cos2 cosK 式(8.6)21sincosKf 先讨论一下前两种方法,建模分析结果最准确,但是计算量太大,容易造成模具开发成本与时间的增加,经济型不高。根据经验公式计算比较简单,计算结果也大致可靠,但是适应面太窄,在本设计中,由于塑件外形复杂,型芯部分亦不规则,无论是建模计算还是应用经验公式都是十分复杂的。对塑件分析,可以将塑件简化为截面为矩形,进而应用经验公式进行估算。经计算,可以将塑件看作是厚壁塑件,应用经验公式计算如下式所示:NAKKfESLbaF133231 . 0)1 ()tan()(22135式中 F 为脱模力(N) ;E 为塑件的弹性模量()取 E=1000;aMPS 为塑料成型的平均收缩率 S=1.48%;t 为塑件的壁厚(mm)t=2;L 为背包型芯的长度(mm)L=1;是塑料的泊松比=0.3;是脱模斜度=3;是塑料与刚才之间的摩擦因数=0.3;ffa 是矩形型芯短边长度()a=8;mmb 是矩形型芯长边长度()b=3;mmA 为塑件在分型面上的投影面积()A=783.86。2mm121.71.12KK8.2.2 推杆脱模机构推杆脱模机构是最简单、最常用的一种形式,具有制造简单、更换方便、推出效果好等特点。推杆直接与塑件接触,开模后将塑件推出。推杆的截面形状;可分为圆形,方形或椭圆形等其它形状,根据塑件的推出部位而定,最常用的截面形状为圆形;推杆又分为普通推杆和成型推杆两种,前者只是起到将塑件推出的作用,后者不仅如此还能参与局部成型,所以,推杆的使用是非常灵活的。1)推杆尺寸计算:本设计采用的是推杆推出,在求出脱模力的前提下可以对推杆做出初步的直径预算并进行强度校核。本设计采用的是圆形推杆,圆形推杆的直径由欧拉公式简化为:d=k() 式(8.7)nEFL脱241=1.2() =10.87mm52101 . 261332315041式中 d推杆直径;n推杆的数量,n 取 6;L推杆长度(参考模架尺寸,估取 L=150);E推杆材料的弹性模量,取;52.1 10EMPak安全系数,取 k=1.2;总的脱模力,=6370(N)。F脱F脱实际推杆尺寸直径为 4mm,可见是符合要求的。但为了安全起见,再对其进行强度校核,强度校核公式为:36 式(8.8)4Fdn 脱压4 78465.8918 169 3.14满足强度要求。推杆材料的许用压应力,。压150aMP压2)推杆的固定形式:推杆的固定形式有多种,但最常用的是推杆在固定板中的形式,此外还有螺钉紧固等形式。3)推出机构的导向:当推杆较细或推杆数量较多时,为了防止因塑件反阻力不均匀而导致推杆固定板扭曲或倾斜折断推杆或发生运动卡滞现象,需要在推出机构中设置导向零件,一般称为推板导柱。4)推出机构的复位:脱模机构完成塑件的顶出后,为进行下一个循环必须回复到初始位置,目前常用的复位形式主要有复位杆复位和弹簧复位。本设计采用弹簧复位机构,弹簧复位机构是一种最简单的复位方式。推出时弹簧被压缩,而合模时弹簧的回力就将推出机构复位。5)推杆与模体的配合:推杆和模体的配合性质一般为 H8/f7 或 H7/f7,配合间隙值以熔料不溢料为标准。配合长度一般为直径的 1.52 倍,至少大于 15mm,推杆与推杆固定板的孔之间留有足够的间隙,推杆相对于固定板是浮动的,如图 8-2 所示。图 8-2 推杆的安装图本设计中的推板和顶针结构如图 8-3 所示。37图 8-3 推板顶针机构自此,整个主要装配图概述完成,经过组装后的装配图通过 PRO/E 可以表示成以下形式,如图 8-4 所示:图 8-4 合模状态下的模具图图 8-4 开模状态下的模具图9 合模导向和定位机构38注塑模闭合时为了保证型腔形状和尺寸的准确性,应按一定的方向和位置合模,所以必须设有导向定位机构,最常见的导向定位机构是在模具型腔四周设 24 对互相配合的导向柱和导向孔,导柱设在动模边或在定模边均可,但一般设在主芯型周围。导向机构主要有导向定位和承受注塑时产生侧压力三个作用:1.导向作用动定模合模时按导向机构的引导,使动定模按正确方位闭合,避免凸模进入凹模时因方位搞错而损坏模具或因定位不准而相互碰伤,因此设在型芯周围的导柱应比主型芯高出至少 68mm。这对于移动式模具采用人工合模时特别重要。2.定位作用在模具闭合后使型腔保持正确的形状和所有由动定模合模构成的尺寸的精度,例如定位不准引起桶形塑件壁厚不均或尺寸精度下降。3.承受注塑产生的侧压力当塑件形状不对称或通过侧浇口注入塑件时都会产生单向侧压力,该力会使动定模在分型面处产生错动,当侧压力很大时,还不能单靠导柱来承担,需要设锥面或斜面进行定位,例如采用圆锥面作分型面能起很好的定位作用。导柱和导套在模具上的安装使用如模架图。对导柱尺寸和结构有以下几点要求:(1)直径和长度:导柱的直径在 1263mm 之间时,按经验其直径 d 和模板宽度 B之比为 d/B0.060.1,圆整后选标准值。导柱无论是固定段的直径还是导向段的直径,其形位公差与尺寸公差的关系应遵循包容原则,即轴的作用尺寸不得超过最大实体尺寸,而轴的局部实际尺寸必须在尺寸公差范围内才合格。导柱长度应该比凸模端面的高度高出 68mm。(2)形状:导柱的端部做成锥形或半球形的先导部分,锥形头高度取与相邻圆柱直径的 1/3,前端还应倒角,使其能顺利进入导向孔。大中型模具导柱的导向段应开设油槽,以储存润滑油脂。(3)公差配合:安装段与模板间采用过渡配合 H7/k6,导向段与导向孔间采用动配合(间隙配合)H7/f7。(4)粗糙度:固定段表面用,导向段表面采用。0.8Raum0.4Raum(5)材料:导柱应具有硬而耐磨的表面,坚韧而不易折断的芯部,因此多采用中碳钢(45 号钢) ,碳(0.50.8mm 深) ,经淬火处理(RC5660)或碳素工具钢(T8A,T10A)经淬火或表面处理(HRC5055) 。对导套尺寸和结构设计有以下几点要求。导向孔可以直接加工在模板上,这种结构加工简便,但模板上未淬火的导向孔耐磨性差,用于塑件批量小的模具,多数模具的导向孔镶有导套,它既可淬硬以提高寿命,又可在磨损后方便更换。39(1)形状:可分为直导套和带轴肩导套两类。(2)公差配合与表面粗糙度:导套内孔与导柱之间采用动配合 H7/f7。 外表面与模板孔为较紧的过度配合 H7/n6(直导套)或 H8/K7 带轴肩导套) ,其前端可设计长 3mm 的引导部分,按松动配合 H8/e7 制造,其粗糙度内外表面均可用 Ra0.8或 Ra1.6。mm(3)材料:导套的材料可用耐磨材料,如铜合金制造,当用碳钢时也可采用碳素工具钢淬火处理。硬度 HRC5055,或采用 45 号钢碳淬火,其表面硬度为 HRC5660,但其硬度最好比导柱低 5 度左右。本设计的导套结构如图 10-1 所示。图 10-1 导套结构图本注塑模选带轴肩的导套,导套、导柱与模板间均采用过渡配合的固定方式。结论简而言之,模具是用来成型物品的工具,这种工具有各种零件构成,不同的模具由40不同的零件构成。它主要通过所成型材料物理状态的改变来实现物品外形的加工。本次设计的难点有两处,第一是万向轮的三维建模,由于万向轮的表面是光滑过度的,所以在使用 PRO/E 中的曲面造型这一块时要选择好基准面从而绘制曲线,保证其曲面的光滑;第二就是万向轮底部圆柱内部的四个小凸槽的脱模,在设计中我在动模板上设计了一个型芯镶件,从而保证了圆柱内部的结构。在设计的过程中发现经验公式有不一致的地方,不同公式的计算结果有的相差很大,特别是在温度调节与脱模力的计算这两块。在完成图纸之后发现塑件的设计有的地方是不合理的,比如说壁厚,虽然有经验可循,但从实际中看显然本设计的塑件壁厚过大;还有就是推杆处的设计不合理,按该塑件加工,则标准推管需要再加工;从这里可以知道,注塑件的设计与模具设计关系密切,好的塑件结构可以简化模具结构,降低生产成本。通过本次设计的内容,基本掌握了单分型面注塑模的设计方法,分型面的确定,浇口位置的确定,冷却系统在设计时要注意的因素,这些都很重要,在设计中要综合考虑,每个结构都是相互制约的。参考文献411 葛正浩.PRO/E 注塑模具设计实例教程M.北京:化学工业出版社,2007.2 野火科技.精通 PRO/E3.0 野火版注塑模具设计M.北京:清华大学出版社,2008.3 编写组.塑料模设计手册M.北京:机械工业出版社,2002.4 杨峰.PRO/E 中文野火版 2.0 教程-塑料模具设计M.北京:清华大学出版社,2005.5 许发越.模具设计与制造手册M.北京:机械工业出版社,2001.6 何满才.工程图设计Pro/ENGINEER WildfireM.北京:人民邮电出版社,2005.7 A. A. Tseng, J. D. Kaplan, O. B, Arinze and T. J. Zhao, Knowledge-based mold design for injection molding process,Proceedings, International Symposium on Intelligent Control, pp. 1199-1204, 1990.8 宋满仓、黄银国、赵丹阳.注塑模具设计与制造实战M.北京:机械工业出版社.2004.9 祝凌云、刘伟.PRO/E 野火版 3.0 自学手册-入门提高篇M. 北京:人民邮电出版社,2006.10 李振格. Auto CAD 2002 中文版M.北京:清华大学出版社,2003.11 R. Fernandez, The effect of part design on tooling cost in injection molding, MS Project Report, Mechanical Engineering Department, University of Massachusetts, Amherst, 1985.12 屈华昌.塑料成型工艺与模具设计M. 机械工业出版社,1995.13 模具制造手册编写组.模具制造手册M. 机械工业出版社,1996.14 炳尧,韩泰荣,蒋文生.模具设计与制造简明手册M. 上海:科学技术出版社,1998.15 叶久新,王群.塑料成型工艺及模具设计M. 机械工业出版社,2007.42附录附录 1An Improved Rough Set Approach to Design of Gating Scheme for Injection MouldingF. Shi,1 Z. L. Lou,1 J. G. Lu2 and Y. Q. Zhang1 1Department of Plasticity Engineering, Shanghai Jiaotong University, P. R. China; and 2Center of CAD, Nanjing University of Chemical Technology, P. R. ChinaThe gate is one of the most important functional structures in an injection mould, as it has a direct influence on the quality of the injection products. The design of a gating scheme includes the selectionof the types of gate and calculation of the sizes and determination of the location, which depends heavily on prior experience and knowledge and involves a trial-and-error process. Due to the vagueness and uncertainty in the design of a gating scheme, classical rough set theory is not effective. In this paper, a fuzzy rough set model is proposed, which is not based on equivalent relationships but on fuzzy similarity relationships. An inductive learning algorithm based on the fuzzy rough set model (FRILA) is then presented. Compared to decision tree algorithms, the proposed algorithm can generate fewer classification rules; moreover, the generated rules are more concise. Finally, an intelligent prototype system for the design of a gating scheme based on an induced fuzzy knowledge base is developed. An illustrative example proves the effectiveness of the proposed method.Keywords: Fuzzy rough set; Gating scheme; Injection mold; Intelligent design; Knowledge acquisition1. Introduction The manufacturing industry for plastic products has been growing rapidly in recent years, and plastics are used widely to substitute for metals. The injection moulding process is the most popular moulding process for making thermoplastic parts. The feeding system, which is one of the important functional structures, comprises a sprue, a primary runner, a secondary runner and a gate. The molten plastic flows from the machine nozzle through the sprue and runner system and into the cavities through the gate. Acting as the connection between the runner and the cavity, the gate can influence directly the mould venting, the occurrence of jetting, the location of weld lines, and warpage, shrinkage and residual stresses. Hence, the gate design is important for assuring the quality of the mould.The design of a gate includes the selection of the type of gate, calculation of the size and determination of the location. And the design of a gate is based on the experience and knowledge of the designers. The determinations of the location and sizes are made based on a trial-and-error process. In recent years, a feature-modelling environment and intelligent technology have been 43introduced for gate design. Lee and Kim investigated gate locations using the evaluation criteria of warpage, weld lines and izod impact strength. A local search was used to determine the nodes of the location of the gate 1. Saxena and Irani proposed a frame for a non-manifoldtopology-based environment. A prototype system for gate location design was developed. The criteria for evaluation were based on geometry-related parameters 2. Lin selected the injection location and size of the gate as the major control parameters, and chose the product performance (deformation) as the optimising parameter. Combining the technologies of abductive networks and simulation annealing optimisation algorithms, the optimal model for the location and size of the gate was constructed 3,4. Zhou et al. established a rule set for determining the location of the gate based on analysis of the plastic parts. The location of the gate was determined through reasoning with rules 5. Pandelidis et al. developed a system which can optimise gate location based on the initial gating plans. The system used MOLDFLOW software for flow analysis, and controlled the temperature differential and the number of elements overpacked with an optimisation strategy 6.Deng used ID3 and its modified algorithms to generate the rule set for the selection of the gate types 7. However, there are many fuzzy or vague attributes in the selection of the types, such as the attribute of loss of pressure that has two fuzzy linguistic variables i.e. can be high and must be low. The ID3 algorithms cannot deal with fuzzy or “noise” information efficiently. It is also difficult to control the size of the decision tree extracted by the algorithms and sometimes very large trees are generated, making comprehensibility difficult 7,8.Rough set theory provides a new mathematical approach to vague and uncertain data analysis 9,10. This paper introduces the theory of rough sets for the design of a gating scheme. The selection of the type of gate is based on the theory of rough sets. Considering the limitations of rough sets, this paper proposes an improved approach based on rough set theory for the design of the gating scheme. The improved rough set approach to the scheme design will be given first. A fuzzy rough-set-based inductive learning algorithm (FRILA), which is applied in the improved approach, will then be presented. An example of the design of a gate will finally be given. Table 1. Classification criteria.Condition attributes Fuzzy linguistic variables Style of plastic parts (p) (Deep, Middle, Shallow) Shell, (Deep, Middle, Shallow) Tube, (Deep, Middle, Shallow) Ring Number of cavities (n) Single-cavity, Multi-cavity Loss of pressure (l) Can be high, Must be low 44Condition of separating gate from parts (q) Must be easy, Not request specially Machining performance (m) Must be easy, Not request specially 2. A Rough Set Approach to Gating Scheme Design 2.1 Design of the Gating Scheme The model of the gating scheme design can be described as follows. A decision table with 4-tuples can be represented as T = (U, C, D, T). where U is the universe. C = C1, C2, , Ck is the set of condition attributes, each of which measures some important feature of an object in the universe U. T(Ck) = Tk 1,T2k ,.,TkSk is the set of discrete linguistic terms. In other words, T(Ck)is the value set of the condition attributes. D = D1, D2, , Dl is the set of decision attributes, that is, each object in the universe is classified by the set D.Generally, the condition attributes can be classified as five sets, including style of plastic parts, number of cavities, loss of pressure, condition of separating gate from parts and machine performance. The details of the five condition attributes and corresponding variables of the fuzzy linguistic are shown in Table 1.From the table, it can be seen that most of the attributes are vague since they represent a human perception and desire. For instance, shell, tube and ring are selected for the classification of plastic parts and their fuzzy linguistic values are “deep”, “middle” and “shallow”, respectively. For the attribute loss of pressure, “can be high” and “must be low” are selected to approximate the fuzzy attribute.A fuzzy rule for gating scheme design can be written in the following form:IF (C1 is T1 i1) AND (Ck is Tik) THEN (DisDj) (1) where Tkik is the linguistic term of condition attribute Ck, and Dj is a class term of the decision attribute D. Fuzzy rules with the form of Eq. (1) are used to perform min-max fuzzy inference. Let ck be the membership value of an object in Tk and d be the forecast value of Dj, where d = ik min(ck) and min is the minimum operator. If two or more rules have the sameconclusion, the conclusion with the largest value of d, which is also named the certainty factor is chosen. For the problem of the gating schemedesign, a fuzzy design rule can be described as follows.IF (Type of plastic part = middle shell) AND (Number of cavities = single) AND (Condition of separating gate from part = not request especially)(2) THEN (Gating scheme = straight gate) CF = 0.825 45From the above rule, the gating scheme of the straight gate will be selected is s with a certainty factor of 0.825, if the type of part is middle shell and the number of cavities is single and the condition of separating gate from part is not required. The above is just like human language and is easy to understand.2.2 Basic Concepts of Rough Sets In recent years, the rough set (RS) theory, proposed by Pawlak, has been attracting the attention of the researchers. The basic idea of RS is to classify the objects of interest into similarity classes (equivalent classes) containing indiscernible objects via the analysis of attribute dependency and attribute reduction. The rule induction from the original data model is data-driven without any additional assumptions. Rough sets have been applied in medical diagnosis, pattern recognition, machine learning, and expert systems 10,11.A decision table with a 4-tuple can be represented as T = , where U is the universe, , C and D are the sets of condition and decision attributes, respectively, V is the value set of the attribute a in A, and f is an information function.Assuming a subset of the set of attributes, two objects x and y in U are indiscernible with respect to P if and only if , .The indiscernibility relation is written as IND(P). U/IND(P) is used to denote the partition of U given the indiscernibility relation IND(P).A rough set approximates traditional sets by a pair of sets, which are the lower and the upper approximations of the sets. The lower and upper approximations of a set Y . U given an equivalence relation IND(P) are defined as follows: The definition of the lower approximation of a set involves an inclusion relation whereby the objects in an equivalence class of the attributes are entirely contained in the equivalence class for the decision category. This is the case of a perfect or unambiguous classification. For the upper approximation, the objects are possibly classified using the information in attribute set P.Attribute reduction is important for rough set theory. Based on the above definitions, the concept of reduction, denoted by RED(P), is defined as follows: Q . P is a reduction of P if and only if IND(P)=IND(Q).2.3 An Improved Rough Set Approach In the design of the gating scheme, it is crucial to acquire the fuzzy rules efficiently. Knowledge acquisition is the bottleneck. A rough set is applied to solve the problem for the design of the gating scheme. The block diagram for the design of the gating scheme with the rough set is shown in Fig. 1. The case library is obtained from the experience and knowledge of 46experts and some reference books. A rough-set-based inductive learning algorithm is adopted to identify the hidden patterns and relationships in the case library and acquire knowledge. The knowledge is represented as a set of fuzzy “ifThen” rules. During the design stage, the system employs the fuzzy rules to perform fuzzy inference according to the design requirements. Then the appropriate gating scheme can be obtained.Although the rough set is efficient for knowledge acquisition, there are some limitations for the application of the original rough set in the selection of the gating scheme.1. The original rough set is efficient for problems with discrete attributes, but it cannot deal with the fuzzy attributes efficiently. For fuzzy attributes, the traditional decision table is normally transformed into a binary table by obtaining Fig. 1. Block diagram of the gating scheme design with RS. the -cut set of the fuzzy set. Obviously, there is no crisp boundary between the fuzzy attributes.2. The original rough set is based on the indiscernibility relation. The universe is classified into a set of equivalent classes with the indiscernibility relation. The lower and upper approximations are generated in terms of the equivalent classes. In practice, the original rough set classifies the knowledge too fussily, which leads to the complexity of the problem. The fuzzy set and rough set theories are generalisations of classical set theory for modelling vagueness and uncertainty. Pawlak and Dubois proposed that the two theories were not competitive but complementary 11,16. Both of the theories are usually applied to model different types of uncertainty. The rough set theory takes into consideration the indiscernibility between objects, whereas the fuzzy set theory deals with the ill-definition of the boundary of a class through the membership functions. The attributes can be presented by fuzzy variables, facilitating the modelling of the inherent uncertainty of the knowledge domain. It is possible to combine the two theories to solve the design problem of the gating scheme better. A fuzzy rough set model is presented based on the extension of the classical rough set theory. The continuous attributes are fuzzified with the proper fuzzy membership functions. The indiscernibility relation is generalised to the fuzzy similarity relation. An inductive learning algorithm based on fuzzy rough set model (FRILA) is then proposed. The fuzzy design rules are extracted by the proposed FRILA. The gate design scheme is then obtained after fuzzy inference. The detailed implementation will be discussed in the next section.47Fig. 1. Block diagram of the gating scheme design with RS.3. Implementation of FRILA A fuzzy rough-set-based inductive learning algorithm consists of three steps. These steps are the fuzzification of the attributes, attribute reduction based on the fuzzy similarity relation and fuzzy rule induction. 3.1 Fuzzifying the Attributes Generally, there are some fuzzy attributes in the decision table, such as loss of pressure. These attributes should be fuzzified into linguistic terms, such as high, average and low. In other words, each attribute a is fuzzified into k linguistic values Ti, i = 1, , k. The membership function of Ti can be subjectively assigned or transferred from numerical values by a membership function. A triangular membership function is shown in Fig. 2, where (x) is membership value and x is attribute value. For instance, a shell part can be described as 0.8/deep, 0.4/middle, 0/shallow. It should be mentioned that membership is not probability and the sum of the membership values may not equal 1. The concept of fuzzy distribution is given as follows. Assuming that attribute A has k linguistic terms whosemembership function is Ai(x), respectively, where x is the value of A and i = 1, 2, , k, the fuzzy distribution of A is ,Rough Set Approach to Gating Scheme for Injection Moulding 665Step 1. Calculate normal similarity relation matrix R. in terms of de.nition 3. Step 2. Select ,and let and. Step 3. Step 4. If and , then X . X . xj, Y . Yxj.; Step 5. . Step 6. If j n, then GOTO Step 4; otherwise, GOTO next step. Step 7. If card(Y) . 1, then and xi, GOTO Step 3; otherwise,GOTO next step. Step 8. Output the set X and let Step 9 If , then end; otherwise, GOTO Step 2. In step 7, card (Y) denotes the cardinality of set Y. 48According to the algorithm, U/IND(R .i), the partition is calculated given the attribute ai . A with the level value .i. The partition of U given attribute set A with level value set can be de.ned as follows: where A and . are the attribute set and the level value set, respectively, and operator . is de.ned as follows:Considering a subset X C U and a fuzzy similarity relation R. de.ned on U, the lower approximation of X, denoted by R.(X), and the upper approximation of X, denoted by R. .(X), are respectively de.ned as follows: Assuming U/IND(R. ) and Y are two partitions on U, where U/IND(R.) = X1, X2, , Xk and Y = Y1, Y2, , Yr, the positive region POS. C(Y)isde.ned as follows:.The amount of data is normally very large and there is a lot of redundant information. Attribute reduction can remove the redundant or noise information successfully. In the attribute reduction, the attribute reduction set is not single. The cardi-nality of the reduction set determines the dimensionality of problem, so it is important to select a minimal reduction. The minimal reduction can be de.ned as follows:Assuming a subset C. C and C is the attribute set, C is the minimal reduction, if and only if C is characterised by following two properties.In order to construct the fuzzy similarity relation, the measurement of the fuzzy similarity relation should be introduced first. Generally, the maxmin method, the relational factor method and the Minkowski distance-based closeness degree method are used to calculate the factor rij. Considering R. is a fuzzy similarity matrix and . is the level value, the matrix R. . is called normal similarity relation matrix after the following operation. The matrix R has the properties of reflexivity and the symmetrivity. In order to obtain the partition of U given the fuzzy similarity relation R an algorithm is given as follows. Input: fuzzy similarity matrix R. and level value . Output: U/IND(R), which is a partition of U given fuzzy similarity relation R. and level value. Calculate normal similarity relation matrix R. in terms of definition 3. 49Step 2. Select xj. U,and let X and Y. Step 3. j. 0. Step 4. If rij = 1 and xj . X, then X . X . xj, Y . Yxj.; Step 5. j . j + 1. Step 6. If j n, then GOTO Step 4; otherwise, GOTO next step. Step 7. If card(Y) . 1, then select xi . Y and Y . Y . xi, GOTO Step 3; otherwise, GOTO next step. Step 8. Output the set X and let U . U . X. Step 9 If U = , then end; otherwise, GOTO Step 3.2 In step 7, card (Y) denotes the cardinality of set Y. aAccording to the algorithm, U/IND(R i), the partition is calculated given the attribute ai . A with the level value i. The partition of U given attribute set A with level value set can be defined as follows: U/IND(R. A) =. U/IND(R a i): ai . A, i . (3) where A and . are the attribute set and the level value set, respectively, and operator . is defined as follows: Considering a subset X C U and a fuzzy similarity relation .AR. defined on U, the lower approximation of X, denoted by (X), and the upper approximation of X, denoted by R. (X), are respectively defined as follows: . (X) = Y:Y. U/IND(R), Y . X) (5) .A .AR(X) = Y:Y. U/IND(R), Y . X (6) CAssuming U/IND(R) and Y are two partitions on U, where .CU/IND(R) = X1, X2, , Xk and Y = Y1, Y2, , Yr, the positive region POS. The amount of data is normally very large and there is a lot of redundant information. 50Attribute reduction can remove the redundant or noise information successfully. In the attribute reduction, the attribute reduction set is not single. The cardinality of the reduction set determines the dimensionality of problem, so it is important to select a minimal reduction. The minimal reduction can be defined as follows: Assuming a subset C. C and C is the attribute set, C is the minimal reduction, if and only if C is characterised by following two properties: Assuming a condition attribute set C and a decision attribute set D, the degree of dependency of C on D, denoted by where card(X) denotes the cardinality of set X and 0 . According to the definition of the degree of dependency, the attribute significance for every attribute a . C . R can be defined as follows. In order to obtain the minimal reduction, a hierarchy attribute reduction algorithm is proposed as follows. Step 2. Compute the attribute significance SIG(x, R, D) for Step 3. Select the attribute x with the highest value SIG. The computational complexity of the algorithm is O(m2), where m is the number of the algorithm,attribute reduction can be treated as a tree traversal. Each node of the tree represents the condition attribute Calculating the minimal reduction can be transformed to picking the best based on some heuristic information. The operator can reduce the computation by using refrom .3.3 Fuzzy Rules Induction Based on the above fuzzy rough set model, the rule inductive learning algorithm is proposed, and is described as follows. 1. Fuzzify the attributes and compute the fuzzy distribution of them. 2. Calculate the fuzzy similarity matrix for every attribute. 3. Calculate the fuzzy partition U/IND(R. ) given the fuzzy similarity relation R. with the value set . based on Algorithm 1. 4. Calculate the minimal attribute reduction based on Algorithm 5. Calculate the attribute core of the condition attribute with respect to the decision attribute and obtain the minimal reduction of the condition attribute, then delete the redundant objects. 6. For every object, calculate the value core of the condition attribute, and then delete the redundant attribute values and objects. 7. Delete the same objects in decision table and translate the decision rules. 4. A Case Study In order to evaluate the effectiveness of the proposed method, an example shown in Fig. 3 is chosen in this section. The design requirements are given as follows: Part style: middle shell Number of cavities: single Loss of pressure: may be high Condition of separating gate from 51parts: must be easy Machining performance: must be easy Part material: ABS 4.1 Fuzzy Knowledge Acquisition Eliciting knowledge from any source of data is notoriously difficult, so knowledge acquisition is a bottleneck. There are five condition attributes for the gating scheme design as shown in Table 1. The attribute number of cavities has no fuzziness for its value is either “single” or “multiple”, so it is represented as 0, 1, and the other four attributes are fuzzy ones and are represented by membership functions. The decision attribute of the gating scheme has nine linguistic terms, which correspond to nine gating schemes, respectively. First, a fuzzy decision table including 144 objects is constructed by calculating the fuzzy distributions of each attribute. Second, The fuzzy similarity relations of six attributes are constructed in terms of the Euclid distance based closeness degree. Then given the level values, the fuzzy similarity matrix is transformed to a normal similarity matrix. Third, the fuzzy partition U/IND(R)is calculated in terms of Algorithm 1 given the fuzzy similarity relation R. with the value set . where the level values of the condition attributes are as follows: the one of decision attribute, denoted .Fig. 3. An example part. Rough Set Approach to Gating Scheme for Injection Moulding 667 by d, is 0.8. Fourth, Calculate the attribute reduction so there is no redundant attribute. Finally, 22 fuzzy rules with the form of Eq. (2) are obtained. According to the different level values, the different number of fuzzy rules can be obtained. 52In practice, it is shown that the value of d has the largest effect on the number of rules. If the level values of condition attributes are given as follows: the value of d and the number of rules (num) is obtained, and shown in Fig. 4. 4.2 Discussion As stated previously, the different number of fuzzy rules can be obtained in terms of the level values. In reference 7, the D3 algorithm and ID3-like algorithms are used to extract rules. However, the algorithms tend to involve more attributes than FRILA for the hierarchical structure of its output decision rules. In other words, the rules induced by the ID3-like algorithms have redundant attributes and are not more concise than the rules induced by FRILA. In the gating scheme design, on one hand, more concise and fewer rules lead to a more efficient selection of gate; on the other hand, more rules with higher level values lead to a higher selection accuracy. These two factors have to be traded off to satisfy application-dependent specifications. The comparison of ID3-like algorithms and FRILA is shown as Table 2, where the algorithms of MNIDR and MNID are improved versions of classical ID3 in reference 7. It is seen from Table 2 that higher . may lead to a bigger rule set with higher accuracy rate; moreover, when the accuracy rate is 100%, the number of rules induced by FRILA is fewer than that induced by ID3-like algorithms. Therefore, FRILA can induce fewer fuzzy rules with different level knowledge to cover the field and reduce the possibility of combination explosion. 4.3 Design Implementation With the rule set for gating scheme design incorporated in an integrated environment, a prototype intelligent gating scheme design system has been developed. A commercial CAD system, named Pro/Engineering, is selected as the software platform, and Visual C+ language and Pro/Toolkit are selected as the developing tools. The prototype system can implement the Table 2. Comparison of four algorithms. Algorithm Number of rules Accuracy (num) rate (%) ID3 70 100 MNIDR 60 100 MNID 49 100 FRILA: automatic design of the gate. The prototype system employs the induced rules to perform fuzzy inference. For each datum to be classified, all rules are applied. Based on the fuzzy classification model described in Section 2, the following rule is selected: IF (Number of cavities = single) AND (Loss of pressure = may be high) AND(Condition of separating gate from parts = must be easy) THEN (Gating scheme = point gate) CF = 0.93 Therefore, a point gate is suitable for the part. The sizes of the gate are designed using the reference manuals, for instance, point gates vary in size from diameters of 0.82 mm for unloaded materials to diameters of 2.53 mm for loaded grades 21. In order to facilitate the automation of the gating design, a gate feature library is provided, which contains nine types of classical gates. Modifications of gate features can be done by changing the key shape parameters. 53According to the designers choice, the gate feature is then added to the plastic part through assembly operations, such as mating, aligning and orienting. The gate is finally designed as shown in Fig. 5. Fig. 4. Relation between d and num. Fig. 5. The final design of point gate. Fig. 4. Relation between d and num5. Conclusions In the design of a gate, the design of a gating scheme relies heavily on the knowledge and experience of the mold engineer and involves a trial-and-error process. In this paper, the design of a gating scheme is discussed in detail. Due to the vagueness and uncertainty in the selection of the gate, the classical rough set theory is not effective. By combining a fuzzy set with a rough set, a fuzzy rough-set-based inductive learning algorithm is proposed. Using the algorithm, the fuzzy rule set for the selection of a gate is established. Compared to the decision tree algorithms, the proposed algorithm can generate fewer classification rules and the generated rules are more concise. An intelligent gating scheme design prototype system based on the gating scheme knowledge base is developed, which can improve the efficiency of the gate design. Acknowledgement The paper is partly supported by National Natural Science Foundation of P. R. China (No. 60175019) and the Youth Foundation of Science, Shanghai, P. R. China. References 1. B. H. Lee and B. H. Kim, “Optimization of part wall thickness to reduce warpage of injection-molded parts based on the modified complex method”, Polymer Plastics Technology Engineering, 34, pp. 793811, 1995. 542. Saxena and R. K. Irani, “An integrated NMT-based CAE environment-part : Application to automated gating plan synthesis for injection molding”, Engineering with Computers, 9, pp. 220 230, 1993. 3. Lin, “Optimum gate design of freeform injection mould using the abductive network”, International Journal of Advanced Manufacturing Technology, 17, pp. 297304, 2001. 4. C. C. Tai and J. C. Lin, “The optimal position for the injection gate of a die-casting die”, Journal of Materials Processing Technology, 86, pp. 87100, 1999. 5. Z. Y. Zhou, Z. Zh. Gu and J. Y. Shi, Research on integrated design techniques for injection mold runner system”, Journal of Computer-Aided Design and Computer Graphics, 12(1), pp. 610, 2000 (in Chinese). 6. I. Pandelidis, Q. Zou and T. J. Lingard, “Optimization of gate location and operational molding conditions for injection molding”, Proceedings ANTEC, 46, pp. 1820, 1988. 7. Q. Deng, “The key technologies in mold intelligent manufacture”, Shanghai Jiaotong University, Shanghai, 1996 (in Chinese). 8. J. Wang, J. Cui and K. Zhao, “Investigation on AQ11, ID3 and the principle of discernibility matrix”, Journal of Computer Science and Technology, 16(1), pp. 112, 2001. 9. Y. Yuan and M. J. Shaw, Induction of fuzzy decision trees”, Fuzzy Sets and Systems, 69(2), pp. 125139, 1995. 10. Z. Pawlak, “AI and intelligent industrial applications: the rough set perspective”, Cybernetics and Systems: An International Journal, 31(4), pp. 227252, 2000. 11. Z. Pawlak, “Rough sets and fuzzy sets”, Fuzzy Sets and Systems, 17(1), pp. 88102, 1985. 12. R. Slowinski and D. Vanderpooten, “A generalized definition of rough approximations based on similarity”, IEEE Transactions on Knowledge and Data Engineering, 12(2), pp. 331336, 2000. 13. Z. L. Lou and Y. Q. Zhang, “Fuzzy knowledge acquisition in gate design”, Chinese Journal of Mechanical Engineering, 13(1), 14. Q. Shen and A. Chouchoulas, “FuREAP: A fuzzy-rough estimator of algae populations”, Artificial Intelligence in Engineering, 15, F. Shi, Z. L. Lou and Y. Q. Zhang, “An improved strategy for attribute reduction in rough set”, Sixth International Conference for Young Computer Scientists, 1, pp. 4144, October 2001. 16. D. Dubois and H. Prade, “Rough fuzzy sets and fuzzy rough sets”, International Journal General Systems, 17, pp. 191208, 1990. 17. L. P. Khoo, S. B. Tor and L. Y. Zhai, “A rough-set-based approach for classification and rule induction”, International Journal of Advanced Manufacturing Technology, 15, pp. 438444, 1999. 18. L. P. Khoo, S. B. Tor and J. R. Li, “A rough set approach to the ordering of basic events in a fault tree for fault diagnosis”, 55International Journal of Advanced Manufacturing Technology, 17, 19. R. S. Lee, Y. M. Chen and C. Z. Lee, “Development of a concurrent mold design system: a knowledge-based approach”, Computer Integrated Manufacturing Systems, 10(4), pp. 287 307, 1997. 20. S. M. Chen, “A new method for constructing fuzzy decision trees and generating fuzzy classification rules from training examples”, Cybernetics and Systems: An International Journal, 31, pp. 763 785, 2000. 21. P. S. Cracknell and R. W. Dyson, Handbook of Thermoplastics Injection Mould Design, Blackie Academic and Professional, 1993. Fig. 5. The final design of point gate.56一种关于粗糙集改进注射模具浇道的报告一种关于粗糙集改进注射模具浇道的报告浇道在注塑模具中是一个很重要的功能结构,因为它可以直接影响注塑产品的质量。设计的浇注方案包括开模类别的选择,计算尺寸,和定位的判断,这些都大大的依赖与长期的经验和知识,也包括大量的试验过程。为了应付在开模过程中模糊的和一些不定因素,经典的而是一个模糊的近似关系。理论还是不够的。在这
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:吸尘器万向轮注射模具设计【15张CAD图纸+说明书资料齐全】
链接地址:https://www.renrendoc.com/p-62439005.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!