拉格朗日函数ppt课件.ppt_第1页
拉格朗日函数ppt课件.ppt_第2页
拉格朗日函数ppt课件.ppt_第3页
拉格朗日函数ppt课件.ppt_第4页
拉格朗日函数ppt课件.ppt_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

9 10多元函数的极值及其求法 多元函数的极值和最值条件极值拉格朗日乘数法 一 多元函数的极值和最值 一 多元函数的极值和最值 1 多元函数极值的定义 极大值 极小值统称为极值 使函数取得极值的点称为极值点 设P Rn 函数u f p 在p0的某邻域U p0 内有定义 对任何p U p0 p p0 都有f p f p0 称函数u f p 在p0点有极小值 1 2 3 例1 例 例 2 多元函数取得极值的条件 证 前提 多元函数在 X0 Y0 处有偏导 注 1 极值点处的切平面平行于xoy平面 2 使一阶偏导数同时为零的点 称为函数的驻点 驻点 极值点 如何判定驻点是否为极值点 注意 求最值的一般方法 将函数在D内的所有驻点处的函数值及在D的边界上的最大值和最小值相互比较 其中最大者即为最大值 最小者即为最小值 3 多元函数的最值 第三步 比较以上两步所得各函数值 最大者为M 最小者为m 故M 25 m 9 解 舍去x1 解 由 x y 无条件极值 对自变量除了限制在定义域内外 并无其他条件 实例 小王有200元钱 他决定用来购买两种急需物品 计算机磁盘和录音磁带 设他购买张磁盘 盒录音磁带达到最佳效果 效果函数为 设每张磁盘8元 每盒磁带10元 问他如何分配这200元以达到最佳效果 问题的实质 求在条件下的极值点 二 条件极值拉格朗日乘数法 条件极值 对自变量有附加条件的极值 解 则 2x 3y y 2z 解 可得 即 1 在椭圆上求一点 使其到直线 的距离最短 解设P x y 为椭圆上任意一点 则P到直线 的距离为 求d的最小值点即求的最小值点 作 由lagrange乘数法 令 得方程组 解此方程组得 于是 由问题的实际意义最短距离存在 因此即为所求点 3 解 分析 得 P1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论