




已阅读5页,还剩22页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
5 1AHP方法的基本原理一 递阶层次结构模型首先要把问题条理化 层次化 构造出能够反映系统内在联系的递阶层次结构模型 将具有共同属性的元素归并为一组 作为结构模型的一个层次 同一层次的元素既对下一层次元素起着制约作用 同时又受到上一层次元素的制约 这样 构造了递阶层次结构模型 AHP的层次结构 既可以是序列型的 也可以是非序列型的 一般来说 可以将层次分为三种类型 最高层 只包含一个元素 表示总目标层 中间层 包含若干层元素 表示实现总目标所涉及到的各子目标 称目标层 最低层 表示实现各决策目标的可行方案 称为方案层 1 5 1AHP方法的基本原理一 递阶层次结构模型 层次结构中相邻两层次元素之间的关系用直线标明 称为作用线 元素之间不存在关系 就没有作用线 如果某一元素与相邻下一层次所有元素均有关系 则称此元素与下一层次存在完全层次关系 如果某元素仅与相邻下一层次部分元素存在关系 则称为不完全层次关系 在实际操作中 模型的层次数由系统的复杂程度和决策的实际需要而定 不宜过多 每一层次元素一般不要超过9个 过多的元素会给主观判断比较带来困难 构造一个合理而简洁的层次结构模型 是AHP方法的关键 2 5 1AHP方法的基本原理一 递阶层次结构模型 例1 构建科研课题决策的层次结构模型 决策往往涉及众多因素 成果贡献 人才培养 可行性 发展前景四个目标 和这四个目标相关的因素又有以下几个 实用价值 研究成果给社会带来的效益 包括经济效益和社会效益 实用价值与成果贡献 人才培养 发展前景等目标都有关系 科技水平 课题在学术上的理论价值以及在同行中的领先水平 科技水平直接关系到成果贡献 人才培养 发展前景 优势发挥 课题发挥本单位学科及人才优势程度 体现与同类课题比较的有利因素 与人才培养 课题可行性 发展前景均有关系 难易程度 指课题本身的难度以及课题组现有人才 设备条件所决定的成功可能性 与课题可行性 发展前景相关联 研究周期 课题研究预计所需时间 与可行性直接相关 财政支持 是指课题的经费 设备以及经费来源 与课题可行性 发展前景直接相关 科研课题决策 就是综合上述各种目标和因素 确定各个课题的相对优劣次序 以供优选课题和安排科研力量参考 为此 建立科研课题决策的层次结构模型 模型从上到下 分为四个层次 层次之司的关联情况均以作用线标明 3 5 1AHP方法的基本原理一 递阶层次结构模型 4 5 1AHP方法的基本原理二 判断矩阵及其特征向量 AHP方法采用优先权重作为区分方案优劣程度的指标 优先权重是一种相对度量数 表示方案相对优劣的程度 其数值介于0和1之间 在给定的决策准则之下 数值越大 方案越优 反之越劣 方案层各方案关于目标准则体系整体的优先权重 是通过递阶层次从上到下逐层计算得到 这个过程称为递阶层次权重解析过程 例2 设有3个物体 它们的重量分别为g1 g2 g3 为了测出各物体的重量 现将每一物体与其它物体重量两两比较 第i个物体重量与其它物体重量相比较 得到3个重量比值gi g1 gi g2 gi g3 i 1 2 3 构成一个3行3列的矩阵A 称为3个物体重量的判断矩阵 5 5 1AHP方法的基本原理二 判断矩阵及其特征向量 设3个物体重量组成的向量为 根据线性代数知识 3是矩阵A的最大特征值 G是矩阵A属于特征值3的特征向量 因此 物体测重问题就转化为求判断矩阵的特征值和对应的特征向量 3个物体的重量 就是判断矩阵最大特征值3的特征向量的各个分量 6 5 1AHP方法的基本原理二 判断矩阵及其特征向量 实际中 判断矩阵的构造采用Saaty引用的1 9标度方法 各级标度含义如下表 1 9标度法则符合人的认识规律 有一定科学依据 从人的直觉判断能力看 在区分事物数量差别时 习惯使用相同 较强 强 很强 极端强等判断语言 根据心理学实验表明 多数人对不同事物在相同准则上的差异 其分辨能力介于5 9级之间 1 9标度反映了多数人的判断能力 Saaty将l 9标度方法和其它标度方法进行对比 大量模拟实验证明 1 9标度是可行的 与其它标度方法比较 能更有效地将思维判断数量化 7 5 1AHP方法的基本原理二 判断矩阵及其特征向量 例3 设有3个元素A1 A2 A3 现在构造关于准则Cr的判断矩阵 8 5 1AHP方法的基本原理三 判断矩阵的一致性 定义1 设 如果满足下列二个条件 则称A为互反矩阵 定义2 设 如果满足下列三个条件 则称A为一致性矩阵 9 5 1AHP方法的基本原理三 判断矩阵的一致性 定理1 Perron 设 则 A有最大的正特征值 max 并且 max是单根 其余特征值的模均小于 max 定理2 设 A是互反矩阵 A的属于 max的特征向量X 0 若 max是A的最大特征值 则 max m 若 1 2 m是A的特征值 则 A是一致性矩阵的充分必要条件是 max m 10 5 1AHP方法的基本原理三 判断矩阵的一致性 定理2 设 A是一致性矩阵 则 一致性正矩阵是互反正矩阵 A的转置矩阵AT也是一致性矩阵 A的每一行均为任意指定一行的正数倍数 A的最大特征值 max m 其余特征值均为0 若A的属于 max的特征向量为 产生问题 根据决策者主观判断所构造的判断矩阵具有互反性 但是不一定具有一致性 即不一定满足 11 5 1AHP方法的基本原理三 判断矩阵的一致性 尽管判断矩阵不具有完全的一致性 仍希望它的最大特征值 max略大于阶数m 其余特征值接近于零 称之为满意的一致性 这样 计算出的层次单排序结果才是合理的 因此 必须对判断矩阵的一致性进行检验 使之达到满意的一致性标准 设判断矩阵A的全部特征值为 1 max 2 m 由于A是互反矩阵 aii 1 i 1 2 m 由矩阵理论有 为达到满意一致性 除了 max之外 其余特征值尽量接近于零 取 作为检验判断矩阵一致性指标 12 5 1AHP方法的基本原理三 判断矩阵的一致性 C I越大 偏离一致性越大 反之 偏离一致性越小 判断矩阵的阶数m越大 判断的主观因素造成的偏差越大 偏离一致性也就越大 反之 偏离一致性越小 当阶数m 2时 C I 0 判断矩阵具有完全一致性 因此 必须引入平均随机一致性指标R I 随判断矩阵的阶数而变化 如下表 这些R I值是用随机方法构造判断矩阵 经过1000次以上的重复计算 求出一致性指标 并加以平均而得到的 一致性指标C I与同阶平均随机一致性指标R I的比较值 称为一致性比率 13 5 1AHP方法的基本原理三 判断矩阵的一致性 用一致性比率C R检验判断矩阵的一致性 当C R越小时 判断矩阵的一致性越好 一般认为 当C R 0 1时 判断矩阵符合一致性标准 层次单排序的结果是可以接受的 否则 需要修正判断矩阵 直到检验通过 判断矩阵的一致性检验步骤是 第一步 求出一致性指标 第二步 查表得到平均随机一致性指标R I 第三步 计算一致性比率 当C R 0 1时 接受判断矩阵 否则 修改判断矩阵 14 5 1AHP方法的基本原理四 判断矩阵求解 判断矩阵A aij m m是决策者主观判断的描述 求解判断矩阵并不要求过高的精度 有根法 和法及幂法 幂法适于在计算机上运算 1 根法 第一步 计算A的每一行元素之积Mi 第二步 计算Mi的m次方根ai 第三步 对向量a a1 a2 am T作归一化处理 得到最大特征值对应的特征向量W w1 w2 wm T 第四步 求A的最大特征值 max 15 5 1AHP方法的基本原理四 判断矩阵求解 1 根法 取算述平均值 16 5 1AHP方法的基本原理四 判断矩阵求解 1 根法 例3 求解下列判断矩阵的最大特征值及其对应的特征向量 并进行一致性检验 17 5 1AHP方法的基本原理四 判断矩阵求解 1 根法 进行一致性检验 所以 判断矩阵A满足一致性检验 18 5 1AHP方法的基本原理四 判断矩阵求解 2 和法 第一步 判断矩阵A的元素按列作归一化处理得到矩阵Q 第二步 将矩阵Q的元素按行相加 得到向量a 第三步 对向量a a1 a2 am T作归一化处理 得到最大特征值对应的特征向量W w1 w2 wm T 第四步 求A的最大特征值 max 19 5 1AHP方法的基本原理四 判断矩阵求解 2 和法 20 5 1AHP方法的基本原理四 判断矩阵求解 2 和法 取算述平均值 21 5 1AHP方法的基本原理四 判断矩阵求解 2 和法 例3 求解下列判断矩阵的最大特征值及其对应的特征向量 并进行一致性检验 22 5 1AHP方法的基本原理四 判断矩阵求解 2 和法 进行一致性检验 所以 判断矩阵A满足一致性检验 23 5 1AHP方法的基本原理四 判断矩阵求解 3 幂法 逐步迭代方法 容易编程计算 第一步 k 0 任取初始正向量 第二步 k 1 迭代计算 定理 设 则 其中E 1 1 1 T C为常数 第k 1步 迭代计算 k 0 1 2 3 24 5 1AHP方法的基本原理四 判断矩阵求解 3 幂法 逐步迭
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025全日制劳动合同书样本
- 法医病理考试题库及答案
- 环保公益及绿色生活推广方案
- 25秋新人教版英语七年级上册 Unit 2 Section B同步练习(含答案)
- 日常生活垃圾清运合同书5篇
- 办公室装修设计与施工合同书条款内容
- 档案法知识考试题及答案
- 2025年贵溪市市直事业单位公开遴选工作人员笔试备考题库及答案
- 合同履行与诚信履约承诺书8篇
- 日语公司笔试题库及答案
- 多式联运国际物流项目可行性研究报告
- 《互联网应用新特征》课件+2024--2025学年人教版(2024)初中信息科技七年级全一册
- 蓄水模块专项监理实施细则
- 创业小白实操手册 第2版 课件 6 做原型小验证-课件标准版
- 康复班-高频电疗法课件
- 劳动教育通论1-11章完整版课件
- DL∕T 2559-2022 灯泡贯流式水轮机状态检修评估技术导则
- 《炼油与化工装置机泵 在线监测系统技术规范》
- 租赁车位安装充电桩协议
- JT-T 722-2023 公路桥梁钢结构防腐涂装技术条件
- 法院书记员考试试题
评论
0/150
提交评论