




免费预览已结束,剩余6页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角恒等变换【考纲要求】1、会用向量的数量积推导出两角差的余弦公式.2、能利用两角差的余弦公式导出两角差的正弦、正切公式.3、能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.4、能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).【知识网络】简单的三角恒等变换三角恒等变换两角和与差的三角函数公式倍角公式【考点梳理】考点一、两角和、差的正、余弦公式要点诠释:1公式的适用条件(定义域) :前两个公式,对任意实数,都成立,这表明该公式是R上的恒等式;公式中2正向用公式,,能把和差角的弦函数表示成单角,的弦函数;反向用,能把右边结构复杂的展开式化简为和差角 的弦函数。公式正向用是用单角的正切值表示和差角的正切值化简。考点二、二倍角公式1. 在两角和的三角函数公式时,就可得到二倍角的三角函数公式: ;。要点诠释:1在公式中,角没有限制,但公式中,只有当时才成立;2. 余弦的二倍角公式有三种:;解题对应根据不同函数名的需要,函数不同的形式,公式的双向应用分别起缩角升幂和扩角降幂的作用。3. 二倍角公式不仅限于2和的二倍的形式,其它如4是2的二倍,的二倍等等,要熟悉这多种形式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公式的关键。考点三、二倍角公式的推论降幂公式:; ; .万能公式:; .半角公式:; ; .其中根号的符号由所在的象限决定.要点诠释:(1)半角公式中正负号的选取由所在的象限确定;(2)半角都是相对于某个角来说的,如可以看作是3的半角,2可以看作是4的半角等等。(3)正切半角公式成立的条件是2k+(kZ)正切还有另外两个半角公式:,这两个公式不用考虑正负号的选取问题,但是需要知道两个三角函数值。常常用于把正切化为正余弦的表达式。考点四、三角形内角定理的变形由,知可得出:,.而,有:,.【典型例题】类型一:正用公式例1.已知:,求的值.【思路点拨】直接利用两角差的余弦公式.【解析】由已知可求得.当在第一象限而在第二象限时,.当在第一象限而在第三象限时,.当在第二象限而在第二象限时,.当在第二象限而在第三象限时,.【点评】例1是对公式的正用当三角函数值的符号无法确定时,注意分类讨论.举一反三:【变式1】已知,则 .【答案】.【变式2】已知,则 .【答案】【变式3】已知和是方程的两个根,求的值.【答案】【解析】由韦达定理,得, , .【高清课堂:三角恒等变换397881 例1】【变式4】某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)(2)(3)(4)(5) 试从上述五个式子中选择一个,求出这个常数 根据()的计算结果,将该同学的发现推广三角恒等式,并证明你的结论.【解析】.选择(2)式计算如下 .证明: 例2已知,,,求的值.【思路点拨】注意到,将,看做一个整体来运用公式.【解析】,,【点评】1、给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,例2中应用了的变换 ,体现了灵活解决问题的能力,应着重体会,常见的变换技巧还有, 等.2、已知某一个(或两个)角的三角函数值,求另一个相关角的三角函数值,基本的解题策略是从“角的关系式”入手切入或突破.角的关系主要有互余(或互补)关系,和差(为特殊角)关系,倍半关系等.对于比较复杂的问题,则需要两种关系的混合运用.举一反三:【变式1】已知,是第二象限角,且,求的值.【答案】【解析】由且是第二象限角,得, ,.【变式2】函数的最大值为( )A B C D 【答案】C; 【解析】,.所以其最大值为2,故选C.【变式3】已知【答案】【解析】角的关系式:(和差与倍半的综合关系) , 【变式4】已知,求的值。【答案】【解析】 , , , 。 类型二:逆用公式例3.求值:(1);(2);(3); (4).【思路点拨】逆用两角和(差)正(余)弦公式,正切公式.【解析】(1)原式=;(2)原式; (3)原式;(4)原式.【点评】把式中某函数作适当的转换之后,再逆用两角和(差)正(余)弦公式,二倍角公式等,即所谓“逆用公式”。辅助角公式:,其中角在公式变形过程中自然确定. 举一反三:【变式1】化简.【答案】【变式2】已知,那么的值为( )A B C D 【答案】A; 【解析】,.例4. 求值:(1);(2)【思路点拨】要使能利用公式化简,分子分母同乘以第一个角的正弦值.【解析】(1)原式=;(2)原式= 【点评】此种类型题比较特殊,特殊在:余弦相乘;后一个角是前一个角的2倍;最大角的2倍与最小角的和与差是p。三个条件缺一不可。另外需要注意2的个数。应看到掌握了这些方法后可解决一类问题,若通过恰当的转化,转化成具有这种特征的结构,则可考虑采用这个方法。举一反三:【变式】求值:(1);(2).【答案】(1);(2)【解析】(1)原式=(2)类型三:变用公式例5求值:(1);(2)【思路点拨】通过正切公式,注意到与之间的联系.【解析】(1),原式.(2),.【点评】本题是利用了两角和正切公式的变形,找出与三者间的关系,进行转化,即所谓“变用公式”解决问题;变用公式在一些解三角问题中起着重要作用,需灵活掌握.但它是以公式原型为基础,根据题目需要而采取的办法,如:,.举一反三:【变式1】求值:= 【答案】1【变式2】在中,,,试判断的形状.【答案】等腰三角形【解析】由已知得,即,又,故,故是顶角为的等腰三角形.类型四:三角函数式的化简与求值例6. 化简:(1);(2)【思路点拨】(1)中函数有正弦有正切,一般将切化弦处理;(2)中有平方,而且角度之间也有关系,所以要用二倍角公式降次.【解析】(1)原式=(2)原式=【点评】三角变换所涉及的公式实际上正是研究了各种组合的角(如和差角,倍半角等)的三角函数与每一单角的三角函数关系。因而具体运用时,注意对问题所涉及的角度及角度关系进行观察。三角变换中一般采用“降次”、“化弦”、“通分”的方法;在三角变换中经常用到降幂公式:,.举一反三:【变式1】化简:(1);(2); (3)【答案】(1)原式=;(2)原式=;(3)原式=.【变式2】若,且,则_.【答案】由,得,.例7已知,且,求的值.【思路点拨】题设中给出是角的正切值,故考虑正切值的计算,同时通过估算的区间求出正确的值.【解析】,而,故,又,故,从而,而,而,又,【点评】对给值求角问题,一般是通过求三角函数值实现的,先求出某一种三角函数值,再考虑角的范围,然
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《口语交际:即兴发言》教学设计 2024-2025学年语文六年级下册统编版
- 2025年全国汽车修理工(高级)职业技能考试复习题库【附答案】
- 第三单元第14课《电子商务》说课稿 2024-2025学年青岛版(2019)初中信息技术第一册
- 第二课 经济全球化说课稿-2025-2026学年初中历史与社会人教版2013九年级下册-人教版(新课程标准)
- 蒸腾作用课件
- 物流运输实务(第三版)习题及答案 项目二同步测试
- 2025年北京pcr考试题及答案
- 蒲柳人家课件观看
- 葡萄酒知识培训课件
- 2025劳动合同韩语模板
- 妇产科护理 课件06章-正常产褥期母婴的护理
- 《劳模工匠之光》课件 第1、2单元 民族大厦的基石、改革攻坚的先锋
- 2025年全国企业员工全面质量管理知识竞赛题库及答案
- 基孔肯雅热防控指南专题课件
- 2025年中级钳工技能鉴定考核试题库(附答案)
- 2025秋教科版科学二年级上册教学课件:第一单元第1课 动物的家
- GB/T 15620-2025镍及镍合金实心焊丝和焊带
- 牧昆:亚朵星球怎样用内容打增量 洞察无法逃离日常用真人秀的思路打增量
- 养老机构出入管理办法
- 中医康复科业务学习课件
- DB11-T 751-2025 住宅物业服务标准
评论
0/150
提交评论