二一般形式的柯西不等式_第1页
二一般形式的柯西不等式_第2页
二一般形式的柯西不等式_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

柯西不等式教学设计 曾辉 三角形式 a 2 b 2 c 2 d 2 a c 2 b d 2 等号成立条件 ad bc 注 注 表示根表示根 向量形式 a1 a2 an b1 b2 bn n N n 2 等号成立条件 为零向量 或 R 一般形式 ai 2 bi 2 ai bi 2 等号成立条件 a1 b1 a2 b2 an bn 或 ai bi 均为零 上述不等式等同于图片中的不等式 推广形式 x1 y1 x2 y2 xn yn x 1 n y 1 n n 注 x 表示 x1 x2 xn 的乘积 其余同理 此推广形式又称卡尔松不等式 其表述是 在 m n 矩阵中 各行元素之和的几何平均 不小于各列元素之和的几何平均之积 应为之积的几何平均之和 概率论形式 E X E Y E XY 二维形式的证明 a b c d a b c d R a c b d a d b c a c 2abcd b d a d 2abcd b c ac bd ad bc ac bd 等号在且仅在 ad bc 0 即 ad bc 时成立 三角形式的证明 a b c d a c b d 证明 a b c d a b c d 2 a b c d a b c d 2 ac bd a b c d 2 ac bd a 2ac c b 2bd d a c b d 两边开根号即得 a b c d a c b d 注 表示绝对值 向量形式的证明 令 m a1 a2 an n b1 b2 bn m n a1b1 a2b2 anbn m n cos a1 2 a2 2 an 2 b1 2 b2 2 bn 2 cos cos 1 a1b1 a2b2 anbn a1 a2 an b1 b2 bn 注 表示平方根 一般形式的证明 ai 2 bi 2 ai bi 2 证明 等式左边 ai bj aj bi 共 n2 2 项 等式右边 ai bi aj bj aj bj ai bi 共 n2 2 项 用均值不等式容易证明 等式左边 等式右边 得证 其中 当且仅当 ai bi aj bj i j 1 n 推广形式的证明 推广形式为 x1 y1 x2 y2 xn yn x 1 n y 1 n n 证明如下 记 A1 x1 y1 A2 x2 y2 由平均值不等式得 1 n x1 A1 x2 A2 xn An x1 x2 xn A1 A2 An 1 n x A1 A2 A n 1 n 1 n y1 A1 y2 A2 yn An y1 y2 yn A1 A2 An 1 n y A1 A2 A n 1 n 上述 m 个不等式叠加得 1 x A1 A2 An 1 n y A1 A2 An 1 n 即 A1 A2 An 1 n x 1 n y 1 n 即 A1 A2 An x 1 n y 1 n n 即 x1 y1 x2 y2 xn yn x 1 n y 1 n n 因此 不等式 成立 注 推广形式即为卡尔松不等式 代数形式 设 a1 a2 an 及 b1 b2 bn

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论