已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 重庆科创职业学院授课教案重庆科创职业学院授课教案 课名 高等数学 上 教研窒 高等数学教研 室 班级 编写时间 2 课题 第六节 空间直线及其方程 教学目的及要求 介绍空间曲线中最常用的直线 与平面同为本章的重点 教学重点 1 直线方程 2 直线与平面的综合题 教学难点 1 直线的几种表达式 2 直线与平面的综合题 教学步骤及内容 一 空间直线的一般方程一 空间直线的一般方程 空间直线可以看成是两个平面的交线 故其一般方程为 0 0 2222 1111 DzCyBxA DzCyBxA 二 空间直线的对称式方程与参数方程空间直线的对称式方程与参数方程 平行于一条已知直线的非零向量叫做这条直线的方向向量方向向量 已知直线上的一点和它的一方向向量 0000 zyxM pnm s 设直线上任一点为 那么与 s 平行 由平行的坐标表 zyxMMM0 示式有 p zz n yy m xx 000 此即空间直线的对称式方程对称式方程 或称为点向式方程 写时参照书上注释 如设 t p zz n yy m xx 000 就可将对称式方程变成参数方程参数方程 t 为参数 旁批栏 4 ptzz ntyy mtxx 0 0 0 三种形式可以互换 按具体要求写相应的方程 例例 1 用对称式方程及参数方程表示直线 0432 01 zyx zyx 解 解 在直线上任取一点 取 解得 000 zyx1 0 x 063 02 00 00 zy zy 即直线上点坐标 2 0 00 zy 2 0 1 因所求直线与两平面的法向量都垂直 取 对 3 1 4 21 nns 称式方程为 3 2 1 0 4 1 zyx 参数方程 tz ty tx 32 41 例例 2 2 一直线过点 且和轴垂直相交 求其方程 4 3 2 Ay 解 解 因为直线和轴垂直相交 所以交点为 于是y 0 3 0 B 4 0 2 BAs 所求直线方程 三 两直线的夹角 三 两直线的夹角 4 4 0 3 2 2 zyx 两直线的方向向量的夹角 通常指锐角 叫做两直线的夹角 设两直线和的方向向量依次为和 1 L 2 L 1111 pnm s 两直线的夹角可以按两向量夹角公式来计算 2222 pnm s 2 2 2 2 2 2 2 1 2 1 2 1 212121 cos pnmpnm ppnnmm 两直线两直线和和垂直 垂直 充分必要条件 1 L 2 L0 212121 ppnnmm 两直线两直线和和平行 平行 充分必要条件 1 L 2 L 2 1 2 1 2 1 p p n n m m 例例 3 3 求过点且与两平面和的交线平行 5 2 3 34 zx152 zyx 的直线方程 解 解 设所求直线的方向向量为 根据题意知 直线的方向向量 pnm s 与两个平面的法向量都垂直 所以可以取 所求 1 3 4 21 nns 直线的方程 1 5 3 2 4 3 zyx 旁批栏 5 四 直线与平面的夹角四 直线与平面的夹角 当直线与平面不垂直时 直线与它在平面上的投影直线的夹角 称为直线与平面的夹角 当直线与平面垂直时 规定直线与 2 0 平面的夹角为 2 设直线的方向向量为 平面的法线向量为L pnm s 直线与平面的夹角为 那么 CBA n 222222 sin pnmCBA CpBnAm 直线与平面垂直 s n 相当于 充分必要条件 p C n B m A 直线与平面平行 sn 相当于 充分必要条件 0 CpBnAm 平面束方程 平面束方程 过平面直线的平面束方程为 01 01 zyx zyx 0 22221111 DzCyBxADzCyBxA 五 杂例 五 杂例 例例 1 1 求与两平面 x 4z 3 和 2x y 5z 1 的交线平行且过点 3 2 5 的直线方程 解 解 由于直线的方向向量与两平面的交线的方向向量平行 故直线的方向 向量 s 一定与两平面的法线向量垂直 所以 34 512 401kji kji s 因此 所求直线的方程为 1 5 3 2 4 3 zyx 旁批栏 6 例例 2 2 求过点 2 1 3 且与直线垂直相交的直线方 12 1 3 1 zyx 程 解 解 先作一平面过点 2 1 3 且垂直于已知直线 即以已知直线的方 向向量为平面的法线向量 这平面的方程为 0 3 1 2 2 3 zyx 再求已知直线与这平面的交点 将已知直线改成参数方程形式为 x 1 3ty 1 2tz t 并代入上面的平面方程中去 求得 t 从而求得交点为 7 3 7 3 7 13 7 2 以此交点为起点 已知点为终点可以构成向量 s 即为所求直线的方向向量 4 1 2 7 6 7 3 3 7 13 1 7 2 2 s 故所求直线方程为 4 3 1 1 2 2 zyx 例例 3 3 求直线 在平面上的投影直线的方 01 01 zyx zyx 0 zyx 程 解 解 应用平面束的方法 设过直线的平面束方程为 01 01 zyx zyx 0 1 1 zyxzyx 即01 1 1 1 zyx 这平面与已知平面垂直的条件是0 zyx 01 1 1 1 1 1 解之得1 代入平面束方程中得投影平面方程为 y z 1 0 所以投影直线为 旁批栏 4 0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 苏州市中医院后勤服务预算编制与执行分析试题
- 芜湖市人民医院老年谵妄快速识别与处理考核
- 宿迁市中医院康复医学体系建设考核
- 莆田市人民医院髂静脉压迫综合征开放手术考核
- 南京市人民医院消化内科团队协作360度评估
- 宣城市人民医院生物反馈治疗考核
- 盐城市人民医院血液肿瘤急诊应对能力考核
- 绥化市中医院妇科内镜设备维护保养考核
- 台州市中医院胎儿超声心动图考核
- 上饶市中医院组织病理学基础考核
- 2025贵州玉屏侗族自治县人民医院第一批招聘编外人员26人考试模拟试题及答案解析
- 氢能管道输送项目分析方案
- DHCP课件讲述教学课件
- 风电大件运输安全培训课件
- 2025广西物资学校公开招聘非实名编工作人员2人笔试备考试题及答案解析
- 污水处理池管理制度
- 人工智能+农业绿色发展模式研究报告
- 文化IP转化驱动的目的地品牌塑造创新研究
- vin码打印管理办法
- 2025年国家林业和草原局招聘面试技巧与答案
- 《互联网时代知识产权保护实务和十四五数字经济发展规划解读》学习资料-题库-温州市继续教育-一般公需课
评论
0/150
提交评论