浅析机构运动仿真分析在机构设计中的作用.docx_第1页
浅析机构运动仿真分析在机构设计中的作用.docx_第2页
浅析机构运动仿真分析在机构设计中的作用.docx_第3页
浅析机构运动仿真分析在机构设计中的作用.docx_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浅析机构运动仿真分析在机构设计中的作用(二) 从图5中可以发现,车厢转动的角速度,由0度/s变化至4.8742度/s,然后再变化至0度/s;三角臂的角速度变化比较复杂,先由0度/s变化至0.9730度/s,然后再变化至0.0453度/s,而后再上升至7.3171度/s,最后以下降至0度/s。 由此可把握举升过程中车厢及三角臂转动快慢的特性,对评估系统的可靠性有一定参考价值。 最后,采用UG软件的加速度分析功能分析活塞运动的加速度、车厢转动的角加速度、三角臂转动的角加速度曲线如图6、图7所示。可以看出,该曲线两头高,中间低。最大数值为19.80 mm/,活塞的质量为92.5Kg,故产生的最大惯性力为:。这种惯性力将对液压油的油压产生一定的冲击影响。 从图7可以发现,车厢转动最大角加速度为2.311度/s ,三角臂转动最大角加速度为4.2927度/s 。如图7所示,车厢总负荷若按50吨计算,那 么,车厢对铰链G的转动惯量为:则车厢对铰链G的惯性矩为:在液压缸上将会产生的惯性力: 对比液压缸自身产生的惯性力与车厢产生的惯性力,数值相差悬殊。因此,液压缸自身产生的惯性力可以忽略不计。可以推断,尽管三角臂转动最大角加速度为4. 2927度/s ,但其质量仅为48Kg,其产生的惯性力亦可忽略不计。 惯性力的大小关系到液压回路关键件的设计,特别是蓄能器的公道选用及其他液压元件工作可靠性估计,应当引起足够的重视。 从以上分析可以看出,只要机构各构件的主要尺寸定下来以后,在一定的活塞行程的条件下,整个机构的运动特性就相应地被确定了。 2.2 自卸车举升机构的动力学分析 运动学特性分析完之后,我们不妨假定施加50吨的载荷进行机构的动力学特性分析。即如图8所示,在车厢的质心位置,加以方向始终垂直向下的负载FG=-490000N。 首先采用UG软件的力学分析功能仿真液压缸实际工作情况的受力曲线图如图9所示。发现液压缸在初始位置受力最大,达到789597.8N,其曲线变化呈较缓的抛物线型。由于使用的活塞直径为200mm,故其截面积为 ,即31416 ,从而液压缸内的压强: 因此得出液压缸正常工作的最小油压为25.1Mpa。 现将举升机构其他6个转动副的受力曲线分析如图10所示,构件拉杆两头分别是转动副J002与J005,根据力的平衡条件,这两个转动副上的受力大小大小相等、方向相反,并作用在同一条直线上(如有差异,由于液压缸及各构件的重力影响所致)。因此这两个转动副的受力与液压缸内部的受力相等。车厢铰轴孔(即转动副J007)处的受力随举升机构的进程而缓缓变大,最大数值达260029N。三角臂铰轴孔(即转动副J001)处的受力随举升机构的进程而缓缓变小,最大数值为334941N。 举升机构的位移、速度、加速度及受力分析完之后,对该机构的固有属性就相应地比较清楚了,下面的工作就是具体的结构设计及强度设计了。3、结论 本篇以F式自卸车举升机构为例进行了具体的运动学及动力学参数分析,使我们深刻了解了采用三维软件进行运动学及动力学参数分析的计算机辅助方法。借助于UG/ Scenario的Motion功能,能够有效地分析机构运动过程中的运动特性和规律。这使得机械设计工程师从复杂的理论计算中解放出来,将更多的精力放在优化设计

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论