




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省宜春市第三中学2016-2017学年高三上学期数学(理)期中考试试卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分)1若集合,则( )A B C D2下列说法正确的是( )A,“”是“”的必要不充分条件B“p且q为真命题”是“p或q为真命题”的必要不充分条件C命题“,使得”的否定是:“,”D命题:“,”,则是真命题3已知点在第一象限,则在内的取值范围是( )A. B. C. D.4. 已知向量,若,则( ) A B C D5. 设,则的值为( )A. B. C. D. 6.已知数列是等差数列,其前项和,则其公差等于( ) A B C D 7.九章算术之后,人们学会了用等差数列的知识来解决问题,张丘建算经卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现一月(按30天计)共织390尺布”,则从第2天起每天比前一天多织()尺布.A B. C. D. 8.函数的定义域是( )A B C D9.变量满足条件,则的最小值为( ) A. B. C. D. 10.函数的图象大致为11.已知函数是上的偶函数,且在区间是单调递增的,是锐角的三个内角,则下列不等式中一定成立的是( ) A B C D12.若抛物线的焦点为,其准线经过双曲线的左焦点,点为这两条曲线的一个交点,且,则双曲线的离心率为( ) A B. C. D. 二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知,则的展开式中的常数项是 .(用数字作答)14.函数在区间上有两个零点,则的取值范围是_15.已知函数在时有极值,则_16将函数f(x)sin1的图像向左平移个单位长度,再向下平移1个单位长度,得到函数g(x)的图像,则函数g(x)具有性质_(填入所有正确性质的序号)最大值为,图像关于直线x对称; 在上单调递增,且为偶函数; 最小正周期为;三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)已知命题,命题,其中.(1)若,P且q为真,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.18(本小题满分12分) 在ABC中,角A,B,C所对的边分别为a,b,c,且sinBsinC (1)求A; (2)若a4,求ABC面积的最大值19. (本小题满分12分)为及时了解适龄公务员对开放生育二胎政策的态度,某部门随机调查了90位30岁到40岁的公务员,得到情况如下表:(1)判断是否有99%以上的把握认为“生二胎意愿与性别有关”,并说明理由;(2)现把以上频率当作概率,若从社会上随机独立抽取三位30岁到40岁的男公务员访问,求这三人中至少有一人有意愿生二胎的概率.(3)已知15位有意愿生二胎的女性公务员中有两位来自省妇联,该部门打算从这15位有意愿生二胎的女性公务员中随机邀请两位来参加座谈,设邀请的2人中来自省女联的人数为,求的分布列及数学期望.男性公务员女性公务员总计有意愿生二胎301545无意愿生二胎202545总计504090附:0.0500.0100.0013.8416.63510.82820.(本小题满分12分)如图,直三棱柱中,为的中点,(1)求证:平面平面;(2)求直线与平面所成角的大小21(本题满分12分)已知函数()若为的极值点,求实数的值;()若在上为增函数,求实数的取值范围;(III)当时,方程有实根,求实数的最大值.请从下面所给的22 , 23 二题中任选一题做答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:极坐标系与参数方程 已知曲线的参数方程为 (为参数),以直角坐标系原点为极点,轴正半轴为极轴建立极坐标系.()求曲线的极坐标方程;()若直线的极坐标方程为,求直线被曲线截得的弦长.23.(本小题满分10分)选修4-5:不等式选讲 已知函数,不等式的解集为.()求实数的值;()若对一切实数恒成立,求实数的取值范围.参考答案一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的(本大题共12小题,每小题5分,共60分)1B 2A 3A 4. D 5. A 6.C 7.B 8.A 9.D 10.D 11.A 12.C8. A9.【答案】10.D 解析:当时,所以,排除B、C;当时,由于函数比随的增长速度快,所以随的增大,的变化也逐渐增大,排除A,故选D12.【答案】【解析】试题分析:设准线与轴的交点为,连接,有题意可知,抛物线的焦点就是双曲线的焦点,所以是双曲线的焦点,因为,所以,那么轴,所以对双曲线来说,所以,故选C.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 56014.【答案】【解析】试题分析:由题意得,得,设,可得在区间上单调递增;在区间上单调递减,所以当时,函数取得极小值,同时也是最小值,因为当时,当时,所以要使得函数在区间上有两个零点,所以实数的取值范围是考点:利用导数研究函数的单调性及极值(最值)15.【答案】考点:利用导数研究函数的极值16解析: 将函数f(x)sin1的图像向左平移个单位长度,再向下平移1个单位长度,得到函数g(x)sin 2x的图像易知函数g(x)具有以下性质:g(x)为奇函数,最大值为,最小正周期为,图像关于直线x(kZ)对称,关于点(kZ)中心对称,在区间(kZ)上单调递增综上可知应填.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.解:(1); (2)18.解:(1)由,得, 所以. 所以,即. (2)由余弦定理,得,当且仅当时取等,即. 所以. 所以面积的最大值为.19. 【答案】(1)没有99%以上的把握认为“生二胎意愿与性别有关”;(2);(3)分布列见解析,期望为故没有99%以上的把握认为“生二胎意愿与性别有关” . . . .4分(2)由题意可得,一名男公务员要生二胎意愿的概率为,无意愿的概率为,记事件:这三人中至少有一人要生二胎,且各人意愿相互独立则 答:这三人中至少有一人有意愿生二胎的概率为. . . .8分(3) 可能的取值为012.12分20.【答案】(1)见解析;(2)【解析】试题分析:(1)首先利用矩形的性质推出,然后结合已知条件可推出平面,从而使问题得证;(2)以为原点建立空间直角坐标系,然后求得相关点的坐标及向量,从而求得平面的法向量,进而利用空间夹角公式求解即可试题解析:(1)证明:在矩形中,为中点,且,2分又,平面,又平面平面平面6分(2)由(1)知又,且平面8分如图,以,分别为,轴建立空间直角坐标系令,则,设平面法向量,则取10分设直线与平面所成的角为,则,即直线与平面所成角为12分考点:1、面面垂直的判定定理;2、直线与平面所成角;3、空间向量的应用21解:(I)因为为的极值点,所以,即,解得。4分(II)因为函数在上为增函数,所以在上恒成立。6 分当时,在上恒成立,所以在上为增函数,故 符合题意。 当时,由函数的定义域可知,必须有对恒成立,故只能,所以在上恒成立。 7分令函数,其对称轴为,因为,所以,要使在上恒成立,只要即可,即,所以。因为,所以。综上所述,a的取值范围为。 8分()当时,方程可化为。问题转化为在上有解,即求函数的值域。因为函数,令函数,10分则,所以当时,从而函数在上为增函数,当时,从而函数在上为减函数,因此。而,所以,因此当时,b取得最大值0. 12分请从下面所给的22 , 23 二题中任选一题做答,如果多做,则按所做的第一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年学历类自考健康教育学-秘书参谋职能概论参考题库含答案解析(5套试卷)
- 2025设备维护服务合同
- 高危水箱基础知识培训课件
- 高二弱电解质课件
- 2025联营养殖协议合同范本
- 2025合同终止的原则及类型
- 2025房产买卖合同协议书
- 2025有关音响设备的租赁合同范本
- 2025驾校学员培训合同协议书示例
- 2025搬运租赁合同范本
- 7-乡土中国-思维导图(各个章节)
- 从文学到电影智慧树知到期末考试答案章节答案2024年山东大学
- AQ/T 1119-2023 煤矿井下人员定位系统通 用技术条件(正式版)
- 房子过户给子女的合同模板
- 奶山羊饲养管理课件讲解
- 初中英语比较级和最高级专项练习题含答案
- SYT 6966-2013 输油气管道工程安全仪表系统设计规范
- 质量通病案例课件
- 2024新课标《义务教育数学课程标准(2022年版)》测试题(含答案)
- 防火巡查记录表防火检查记录表
- 通信工作危险源辨识预控
评论
0/150
提交评论