已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章第一章 勾股定理勾股定理 探索勾股定理 二 探索勾股定理 二 成都石室联中成都石室联中 李朋李朋 一 学生起点分析一 学生起点分析 学生的知识技能基础 学生在七年级已经学习了整式的加 减 乘 除运算和等式的 基本性质 并能进行简单的恒等变形 上节课又已经通过测量和数格子的方法 对具体的 直角三角形探索并发现了勾股定理 但没有对一般的直角三角形进行验证 学生活动经验基础 学生在以前数学学习中已经经历了很多独立探究和合作学习的过 程 具有了一定的自主探究经验和合作学习的经验 具备了一定的探究能力和合作与交流 的能力 学生在七年级 七巧板 及 图案设计 的学习中已经具备了一定的拼图活动经 验 二 教学任务分析二 教学任务分析 本节课是八 上 勾股定理第 1 节第 2 课时 是在上节课已探索得到勾股定理之后的 内容 具体学习任务 通过拼图验证勾股定理并体会其中数形结合的思想 应用勾股定理 解决一些实际问题 体会勾股定理的应用价值并逐步培养学生应用数学解决实际问题意识 和能力 为后面的学习打下基础 三 教学目标三 教学目标 1 1 教学目标 教学目标 知识与技能目标 掌握勾股定理及其验证 并能应用勾股定理解决一些实际问题 过程与方法目标 在上节课对具体的直角三角形探索发现了勾股定理的基础上 经历勾股定理的验证过 程 体会数形结合的思想和从特殊到一般的思想 情感与态度目标 在勾股定理的验证活动中 培养探究能力和合作精神 通过对勾股定理历史的了解 感受数学文化 增强爱国情感 并通过应用勾股定理解决实际问题 培养应用数学的意识 2 2 教学重点 教学重点 用面积法验证勾股定理 应用勾股定理解决简单的实际问题 3 3 教学难点 教学难点 验证勾股定理 四 教法学法四 教法学法 1 1 教学方法 教学方法 引导 探究 应用 2 2 课前准备 课前准备 教具 教材 课件 电脑 学具 教材 铅笔 直尺 练习本 五 教学过程五 教学过程 本节课设计了七个教学环节 一 复习设疑 激趣引入 二 小组活动 拼图验 证 三 追溯历史 激发情感 四 例题讲解 初步应用 五 拓展练习 能力 提升 六 回顾反思 提炼升华 七 布置作业 课堂延伸 第一环节 第一环节 复习设疑 激趣引入复习设疑 激趣引入 内容内容 教师提出问题 1 勾股定理的内容是什么 请一名学生回答 2 上节课我们仅仅是通过测量和数格子 对具体的直角三角形探索发现了勾股定理 对一般的直角三角形 勾股定理是否成立呢 这需要进一步验证 如何验证勾股定理呢 事实上 现在已经有几百种勾股定理的验证方法 这节课我们也将去验证勾股定理 意图 意图 1 复习勾股定理内容 2 回顾上节课探索过程 强调仍需对一般的直 角三角形进行验证 培养学生严谨的科学态度 3 介绍世界上有数百种验证方法 激发 学生兴趣 效果效果 通过这一环节 学生明确了 仅仅探索得到勾股定理还不够 还需进行验证 当学生听到有数百种验证方法时 马上就有了去寻求属于自己的方法的渴望 第二环节 小组活动 拼图验证第二环节 小组活动 拼图验证 内容 内容 活动活动 1 1 教师导入 小组拼图 教师 今天我们将研究利用拼图的方法验证勾股定理 请你利用自己准备的四个全 等的直角三角形 拼出一个以斜边为边长的正方形 请每位同学用 2 分钟时间独立拼图 然后再 4 人小组讨论 活动活动 2 2 层层设问 完成验证一 学生通过自主探究 小组讨论得到两个图形 图图 2 在此基础上教师提问 1 如图 1 你能表示大正方形的面积吗 能用两种方法吗 学生先独立思考 再 4 人小组交流 2 你能由此得到勾股定理吗 为什么 在学生回答的基础上板书 a b 2 4 ab c2 并得到 2 1 222 cba 从而利用图 1 验证了勾股定理 活动活动 3 3 自主探究 完成验证二 教师小结 我们利用拼图的方法 将形的问题与数的问题结合起来 联系整式运算 的有关知识 从理论上验证了勾股定理 你还能利用图 2 验证勾股定理吗 学生先独立探究 再小组交流 最后请一个小组同学上台讲解验证方法二 意图 意图 设计活动 1 的目的是为了让学生在活动中体会图形的构成 既为勾股定理的 验证作铺垫 同时也培养学生的动手 创新能力 在活动 2 中 学生在教师的层层设问引导 下完成对勾股定理的验证 完成本节课的一个重点内容 设计活动 3 让学生利用另一个拼 图独立验证勾股定理的目的是让学生再次体会数形结合的思想并体会成功的快乐 效果效果 学生通过先拼图从形上感知 再分析面积验证 比较容易地掌握了本节课的 2 2 图图1 重点内容之一 并突破了本节课的难点 第三环节 第三环节 追溯历史追溯历史 激发情感激发情感 活动内容 由学生利用所搜集的与勾股定理相关的资料进行介绍 国内调查组报告国内调查组报告 用图 2 验证勾股定理的方法 据载最早是三国时期数学家赵爽 在为 周髀算经 作注时给出的 我国历史上将图 2 弦上的正方形称为弦图 2002 年的数 学家大会 ICM 2002 在北京召开 这届大会会标的中央图案正是经过艺术处理的弦图 这既标志着中国古代的数学成就 又像一只转动的风车 欢迎来自世界各地的数学家们 国际调查组报告 勾股定理与第一次数学危机国际调查组报告 勾股定理与第一次数学危机 约公元前 500 年 毕达哥拉斯学派的弟子希帕索斯 Hippasus 发现了一个惊人的事实 一个正方形的对角线的长度是不可公度的 按照毕达哥拉斯定理 勾股定理 若正方形边长 是 1 则对角线的长不是一个有理数 它不能表示成两个整数之比 这一事实不但与毕氏 学派的哲学信念大相径庭 而且建立在任何两个线段都可以公度基础上的几何学面临被推 翻的威胁 第一次数学危机由此爆发 据说 毕达哥拉斯学派对希帕索斯的发现十分惶恐 恼怒 为了保守秘密 最后将希帕索斯投入大海 不能表示成两个整数之比的数 15 世纪意大利著名画家达 芬奇称之为 无理的数 无理数的英文 irrational 原义就是 不可比 第一次数学危机一直持续到 19 世纪实 数的基础建立以后才圆满解决 我们将在下一章学习有关实数的知识 趣闻调查组报告 勾股定理的总统证法趣闻调查组报告 勾股定理的总统证法 在 1876 年一个周末的傍晚 在美国首都华盛顿的郊外 有一位中年人正在散步 欣赏 黄昏的美景 他走着走着 突然发现附近的一个小石凳上 有两个小孩正在聚精会神地 谈论着什么 时而大声争论 时而小声探讨 由于好奇心驱使他循声向两个小孩走去 想 搞清楚两个小孩到底在干什么 只见一个小男孩正俯着身子用树枝在地上画着一个直角三 角形 a a b b c c 于是这位中年人不再散步 立即回家 潜心探讨小男孩给他留下 的难题 他经过反复的思考与演算 终于弄清楚了其中的道理 并给 出了简洁的证明方法 1876 年 4 月 1 日 他在 新英格兰教育日志 上发表了他对勾 股定理的这一证法 1881 年 这位中年人 伽菲尔德就任美国第二十任总统 后来 人们为了纪念他对勾 股定理直观 简捷 易懂 明了的证明 就把这一证法称为 总统 证法 说明说明 这个环节完全由学生来组织开展 教师可在两天前布置任务 让部分同学收 集勾股定理的资料 并在上课前拷贝到教师用的课件中便于展示 内容可灵活安排 意图意图 1 介绍与勾股定理有关的历史 激发学生的爱国热情 2 学生加强了 对数学史的了解 培养学习数学的兴趣 3 通过让部分学生搜集材料 展示材料 既让 学生得到充分的锻炼 同时也活跃了课堂气氛 效果效果 学生热情高涨 对勾股定理的历史充满了浓厚的兴趣 同时也为中国古代数 学的成就感到自豪 也有同学提出 当代中国数学成就不够强 还应发奋努力 有同学能意 识这一点 这让我喜出望外 第四环节 第四环节 例题讲解例题讲解 初步应用初步应用 内容 例题 飞机在空中水平飞行 某一时刻刚好飞到一个男孩子头顶上方 4000 米处 过了 20 秒 飞机距离这个男孩子头顶 5000 米 飞机每小时飞行多少千米 意图意图 1 初步运用勾股定理解决实际问题 培养学生应用数学的意识和能力 2 体会勾股定理的应用价值 效果效果 学生对这样的实际问题很感兴趣 基本能把实际问题转化为数学问题并顺利 解决 第五环节第五环节 拓展练习拓展练习 能力提升能力提升 内容内容 一组生活中勾股定理的应用练习 共 3 道题 1 教材 P10 练习题 2 一个 25m 长的梯子 AB 斜靠在一竖直的墙 AO 上 这时的 AO 距离为 24m 如 果梯子的顶端 A 沿墙下滑 4m 那么梯子底端 B 也外移 4m 吗 3 受台风麦莎影响 一棵高 18m 的大树断裂 树的顶部落在离树根底部 6 米处 这棵树折断后有多高 说明说明 这一环节设计了 3 道题 设计时注意了题目的梯度 由浅入深 第一题为书 上练习题 学生容易解决 第二道题虽然计算难度不大 但考查学生的实际应用能力 第 三道题是应用勾股定理建立方程求解 有一定难度 意图意图 在例题的基础上进行拓展 训练学生将实际问题转化为数学问题 再运用勾 股定理解决问题 效果效果 小部分学生在完成第二题时 由于欠缺生活常识时 不能准确地理解题意 约有一半同学对第 3 道题束手无策 主要是缺乏利用勾股定理建立方程求解的这种思路 经同学点拨 教师引导 绝大部分同学最后都能解决这个问题 通过 3 个小题的训练 总 体感觉学生对勾股定理的应用更加熟练 并对勾股定理的应用价值体会更深 第六环节 第六环节 回顾反思回顾反思 提炼升华提炼升华 内容内容 教师提问 通过这节课的学习 你有什么样的收获 师生共同畅谈收获 目的 目的 1 归纳出本节课的知识要点 数形结合的思想方法 2 教师了解学生 对本节课的感受并进行总结 3 培养学生的归纳概括能力 效果 效果 由于这节课自始至终都注意了调动学生学习的积极性 所以学生谈的收获很 多 包括利用拼图验证勾股定理中蕴含的数形结合思想 学生对勾股定理的历史的感悟及 对勾股定理应用的认识等等 第七环节 第七环节 布置作业 课堂延伸布置作业 课堂延伸 内容 内容 教师布置作业 1 习题 1 2 1 2 3 2 上网或查阅有关书籍 搜集至少 1 种勾股定理的其它证法 至少 1 个勾股定理的应 用问题 一周后进行展评 意图意图 1 巩固本节课的内容 2 充分发挥勾股定理的育人价值 六 教学设计反思六 教学设计反思 1 1 设计理念 设计理念 在课堂教学中 始终注意了调动学生的积极性 兴趣是最好的老师 所以无论是引入 拼图 还是历史回顾 我都注意去调动学生 让学生满怀激情地投入到活动中 因此 课堂 效率较高 勾股定理作为 千古第一定理 其魅力在于其历史价值和应用价值 因此我注 意充分挖掘了其内涵 特别是让学生事先进行调查 再在课堂上进行展示 这极大地调动了 学生 既加深了对勾股定理文化的理解 又培养了他们收集 整理资料的能力 2 2 突出重点 突破难点的策略 突出重点 突破难点的策略 勾股定理的验证既是本节课的重点 也是本节课的难点 为了突破这一难点 我设计 了拼图活动 先让学生从形上感知 再层层设问 从面积 数 入手 师生共同探究得到 方法 1 最后由学生独立探究得到方法 2 这样学生较容易地突破了本节课的难点 3 3 分层教学 分层教学 根据本班学生及教学情况可在教学过程中选择下述内容进行补充或拓展 基础训练基础训练 1 若 ABC 中 C 90 1 若 a 5 b 12 则 c 2 若 a 6 c 10 则 b 3 若 a b 3 4 c 10 则 a b 2 某农舍的大门是一个木制的矩形栅栏 它的高为 2m 宽为 1 5m 现需要在相对的 顶点间用一块木棒加固 木板的长为 3 直角三角形两直角边长分别为 5cm 12cm 则斜边上的高为 4 等腰三角形的腰长为 13cm 底边长为 10cm 则面积为 A 30 cm2B 130 cm2C 120 cm2D 60 cm2 提高训练提高训练 5 轮船从海中岛 A 出发 先向北航行 9km 又往西航行 9km 由于遇到冰山 只好 又向南航行 4km 再向西航行 6km 再折向北航行 2km 最后又向西航行 9km 到达目的 地 B 求 AB 两地间的距离 6 一棵 9m 高的树被风折断 树顶落在离树根 3m 之处 若要查看断痕 要从树底开 始爬多高 知识拓展知识拓展 7 折叠长方形 ABCD 的一边 AD 使点 D 落在 BC 边的 F 点处 若 AB 8cm BC 10cm 求 EC 的长 E CF B DA 意图 意图 进行分层训练 既满足了不同学生的需求 同时也便于老师及时地了解学生 的情况 老
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 武汉铁路桥梁职业学院《外国文学史Ⅱ》2024-2025学年第一学期期末试卷
- 云南师范大学《物流配送》2024-2025学年第一学期期末试卷
- 防灾科技学院《动物检疫检验学》2024-2025学年第一学期期末试卷
- 湖南省东安县天成实验学校2025年高一上生物期末经典模拟试题含解析
- 2023年绍兴辅警协警招聘考试真题附答案详解(轻巧夺冠)
- 2025年浙江省绍兴市重点中学生物高一第一学期期末检测模拟试题含解析
- 浙江工贸职业技术学院《遥感数字图像处理Ⅱ》2024-2025学年第一学期期末试卷
- 吉林省北大附属长春实验学校2026届高二化学第一学期期末综合测试试题含解析
- 天津机电职业技术学院《英语写作记叙文》2024-2025学年第一学期期末试卷
- 石河子工程职业技术学院《模拟电子技术基础课程设计》2024-2025学年第一学期期末试卷
- 剪刀车安全操作要求培训课件
- 2025年高考(四川卷)化学真题(学生版+解析版)
- 学前教育心理健康指导课程方案
- 2025年山西省建设工程专业高级职称评审考试(建筑经济)历年参考题库含答案详解(5卷)
- 2025年注册验船师资格考试(A级·船舶检验专业基础·环境与人员保护)历年参考题库含答案详解(5套)
- 办公族腱鞘炎风险因素-洞察及研究
- 建筑专业委员会管理办法
- 铁路职业规划课件
- 中医康复培训课件
- 【语文 北京版】2025年高考招生统一考试高考真题语文试卷(真题+答案)
- 2025年江西省事业单位招聘考试综合类专业能力测试试卷(电气类)重点难点解析
评论
0/150
提交评论