




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章第一章 勾股定理勾股定理 探索勾股定理 三 探索勾股定理 三 成都石室联合中学成都石室联合中学 李颖李颖 一 学生起点分析一 学生起点分析 学生的知识技能基础 学生的知识技能基础 本节课内容选自义务教育课程标准实验教科书北京师范大学版的数学教材八 年级上册的第一章第一节 本节课为第三课时 课题为 拼图与勾股定理 在本章的前面几节课中 学生已经学习了勾股定理 了解了勾股定理的广泛使用 学习了利用割补法计算图形的面积来验证 勾股定理 学生的活动经验基础 学生的活动经验基础 学生在初一学习过基本几何图形的面积计算的一些方法 例如 割补法等 但运用面积法和割补思想解决问题意识和能力还不够 因此 可能还需要教师有意识的引导 在先 前的学习过程中 学生已经经历了一些拼图 图案设计的实践活动 如制作七巧板 这些都为本节 课的活动 拼图对勾股定理进行无字的证明 奠定了一定的基础 二 学习任务分析二 学习任务分析 本课题是学生初步认识了 勾股定理 后 对勾股定理探究的加深与提高 具有一定的挑战性 课本上设计了丰富的拼图活动 让学生经过自己的操作和思考 既经历验证勾股定理的过程 获得 相应的数学活动经验 又能了解中外多种方法 开阔视野 感受古代人民的聪明才智 为此确定如 下教学目标 教学目标 知识与技能目标 知识与技能目标 1 通过对几种常见的勾股定理验证方法的分析和欣赏 理解数学知识之间的内在联系 2 经历综合运用已有知识解决问题的过程 加深对勾股定理 整式运算 面积等的认识 过程与方法目标 过程与方法目标 1 经历不同的拼图方法验证勾股定理的过程 体验解决同一问题方法的多样性 进一步体会勾 股定理的文化价值 2 通过验证过程中数与形的结合 体会数形结合的思想以及数学知识之间的内在联系 3 通过丰富有趣的拼图活动 经历观察 比较 拼图 计算 推理交流等过程 发展空间观念 和有条理地思考和表达的能力 获得一些研究问题的方法与经验 情感与态度目标 情感与态度目标 1 通过丰富有趣的拼图活动增强对数学学习的兴趣 通过探究总结活动 让学生获得成功的 体 验和克服困难的经历 增进数学学习的信心 在合作学习活动中发展学生的合作交流的意识 和能力 教学重点 教学重点 1 通过综合运用已有知识解决问题的过程 加深对勾股定理 整式运算 面积等的认识 2 通过拼图验证勾股定理的过程 使学习获得一些研究问题与合作交流的方法与经验 教学难点 教学难点 1 利用 五巧板 拼出不同图形进行验证勾股定理 2 利用数形结合的方法验证勾股定理 教学准备 教学准备 剪刀 双面胶 硬纸板 直尺 或三角板 铅笔 多媒体课件 三 教学过程设计三 教学过程设计 本节课设计了七个教学环节本节课设计了七个教学环节 第一环节第一环节验证方法的收集与整理 第二环节第二环节验证过程的分析与欣赏 第三环节第三环节尝试拼图 验证定理 第四环节第四环节练习提升 第五环节第五环节勾股定理的文化价值 第六环节第六环节小结反思 第七环节第七环节课题拓展 第一环节第一环节验证方法的收集与整理验证方法的收集与整理 课前自主探究活动课前自主探究活动 具体的做法是 请各个学习小组从网络或书籍上 尽可能多地寻找和了解验证勾股定理的方法 并填写探究报告 勾股定理证明方法汇总 方法种类及历史背景验证定理的具体过程知识运用及思想方法 意图 意图 勾股定理是几何学中的明珠 充满魅力 千百年来 人们对它的证明趋之若骛 其中有 著名的数学家 也有业余数学爱好者 有普通的老百姓 也有尊贵的政要权贵 甚至有国家总 统 同时勾股定理是世界上证法最多的定理 在这数百种证明方法中 有的十分精彩 有的十 分简洁 希望学生能从这些证明方法中学习到一些重要的数学方法 数学思想 鼓励同学们作 为新时期的学习者 也能探索出自己的证明方法 激发学习数学的兴趣 学生活动需注意的地方 学生活动需注意的地方 上这节课前一个星期教师布置给学生以下活动 查有关勾股定理的资 料 可上网查 也可查阅报刊 书籍 实行 小组合作制 各小组中自己推荐一人担任 发 言人 一人担任 书记员 在小组结束后 由小组的 发言人 汇报本小组的结果 提前两 三天由几位学生汇总 教师可适当指导 可利用 多媒体视频展示台 展示本组找到的证明方 法 其他小组给予评价 这样既保证讨论的有效性 也调动了学生的学习积极性 探究成果的交流与展示探究成果的交流与展示 以下是学生搜集的勾股定理的证明方法 1 赵爽证明 2 1876 年美国总统 Garfield 证明 3 意大利著名画家达 芬奇的证法 4 毕达哥拉斯 5 青朱出入图 6 在印度 在阿拉伯世界和欧洲出现的一种拼图证明 7 欧几里得证明 意图 意图 使学生在上这节课时就对勾股定理历史背景有全面的理解 从而使学生认识到勾股定理 的重要性 学习勾股定理是非常必要的 激发学生的学习兴趣 同时 这一活动 也是一次对 学生进行爱国主义教育 培养民族自豪感的好机会 可以激励他们奋发向上 同时培养他们的 自学能力 归类总结等能力 第二环节第二环节 验证过程的分析与欣赏验证过程的分析与欣赏 内容 内容 教师引导学生对收集的验证方法进行归类整理 分三种类型 分三种类型 意图 意图 适当的归类整理有助于学生提高对有关验证方法的认识 加深学生的理解 第三环节第三环节 尝试拼图 验证定理尝试拼图 验证定理 内容 五巧板的制作 动手操作 合作探究 内容 五巧板的制作 动手操作 合作探究 教师介绍 五巧板 的制作方法 学生拿出准备好的硬纸板制作 五巧板 步骤 做一个 Rt ABC 以斜边 AB 为边向内做正方形 ABDE 并在正方形内画图 使 DF BI CG BC HG AC 这样就把正方形 ABDE 分成五部分 沿这些线剪开 就得了一幅五巧板 A B C E D F G H I a b c 1 利用五巧板拼 青朱出入图 2 取两幅五巧板 将其中的一幅拼成一个以 C 为边长的正方形 将另外一幅五巧板拼成两个边 长分别为 a b 的正方形 你能拼出来吗 3 用上面的两幅五巧板 还可拼出其它图形 你能验证勾股定理吗 4 利用五巧板还能通过怎样拼图来验证勾股定理 可能的拼图方案 意图 意图 通过前面的展示 学生可能已经基本理解了所谓的 无字证明 但没有通过亲身的体验 b c a a b c 第一种类型 第一种类型 以赵爽的 弦图 为代表 用几何图形的截 割 拼 补 来证明 代数式之间的恒等关系 第二种类型 第二种类型 以欧几里得的证明方法为代表 运用欧氏几何的基本定理进行证明 第三种类型 第三种类型 以刘徽的 青朱出入图 为代表 无字证明 b c 可能仍有相当数量的学生难以认同 甚至部分学生可能还存在一定的怀疑 为此利用五巧板拼 图证明勾股定理 力图通过学生的亲身实验进一步确认 无字证明 的验证方法 活动注意事项 活动注意事项 注意给学生提供充分的实践 探索和交流的时间 鼓励他们积极思考解决问题 的方法 并与他人进行合作与交流 在学生活动时 教师需要及时了解学生拼图的情况及利用自己 的拼图验证勾股定理的情况 并对部分小组或学生进行适当的指导 最后需要对这些方法进行适当 的小结与提升 以上的证明方法都从几何图形的面积变化入手 运用了数形结合的思想方法 其中 第一 三种类型还与拼图有着密切的关系 第四环节第四环节练习提升练习提升 1 议一议 观察下图 用数格子的方法判断图中三角形的三边长是否满足 a2 b2 c2 2 一个直角三角形的斜边为 20cm 且两直角边长度比为 3 4 求两直角边的长 意图 意图 在前面已经讨论了直角三角形三边满足的关系 那么锐角三角形或钝角三角形的三边 是否也满足这一关系呢 学生通过数格子的方法可以得出 如果一个三角形不是直角三角 形 那么它的三边 a b c 不满足 a2 b2 c2 通过这个结论 学生将对直角三角形三边的关系有进 一步的认识 并为后续直角三角形的判别打下基础 第五环节第五环节 勾股定理的文化价值勾股定理的文化价值 1 勾股定理是联系数学中数与形的第一定理 2 勾股定理反映了自然界基本规律 有文明的宇宙 人 都应该认识它 因而勾股定理图被建 议作为与 外星人 联系的信号 3 勾股定理导致不可通约量的发现 引发第一次数学危机 4 勾股定理公式是第一个不定方程 为不定方程的解题程序树立了一个范式 第六环节第六环节 小结反思小结反思 学生反思 我最大的收获 我表现较好的方面 我学会了哪些知识 我还有哪些疑惑 意图 意图 鼓励学生积极大胆发言 可增进师生 生生之间的交流 互动 通过畅谈收获和体会 意在培养学生口头表达和交流的能力 增强不断反思总结的 意识 组织引导学生对本节课的学习活动在知识能力 实践探究的过程以及情感态度 价值观等各个方面进行总结 教师再栽学生的基础上进行总结性概括 b a a c b c 第七环节第七环节 课题拓展课题拓展 1 写数学日记并发挥你的聪明才智 去探索勾股定理 去研究勾股定理 你又有什么新的发 现 2 习题 1 3 3 尝试利用意大利著名画家达 芬奇的方法验证勾股定理 板书设计板书设计 四四 教学反思 教学反思 在课堂教学中 始终注重学生的自主探究在课堂教学中 始终注重学生的自主探究 由实例引入 激发了学生的学习兴趣 然后通过动手操作 大胆猜想 勇于验证等一系列自主 探究 合作交流活动得出定理 并运用定理进一步巩固提高 切实体现了学生是数学学习的主人的 新课程理念 对于拼图验证 学生还没有接触过 所以 教学中 教师给予了学生适当的指导与鼓 励 教师较好地充当了学生数学学习的组织者 引导者 合作者 教会学生思维 培养学生多种能力教会学生思维 培养学生多种能力 课前查资料 培养了学生的自学能力及归类总结能力 课上的探究培养了学生的动手动脑
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025装饰设计制作安装合同样本
- 2025办公室租赁合同模板(模板)
- 2025年合同模板:简易劳动合同范本
- 2025天津市兼职用工劳动合同范本
- 纺织品检验员考生经验试题及答案
- 童年阅读考试题及答案
- 商业美术设计师的创新思维实践试题及答案
- 纺织品市场分析与预测技巧试题及答案
- 淄博医疗面试真题及答案
- 中考宜宾试题及答案语文
- 电子商务大数据分析方法试题及答案
- 【广西】斜拉桥施工组织设计
- 中华文学经典导读知到课后答案智慧树章节测试答案2025年春牡丹江师范学院
- 小学教育学(第5版)课件 第八章 小学教育环境
- 大模型在金融风控领域的应用与效率优化
- 2025年三力反应测试题及答案
- 2025(统编版)语文二年级下册第三单元解析+任务目标+大单元教学设计
- 第六讲探寻新时期中美正确相处之道-2025年春季学期形势与政策课件
- 与合作伙伴的战略合作洽谈纪要
- DB11-T 751-2010 住宅物业服务标准
- 《智慧化工园区系统运维管理要求》
评论
0/150
提交评论