信用评分卡介绍_第1页
信用评分卡介绍_第2页
信用评分卡介绍_第3页
信用评分卡介绍_第4页
信用评分卡介绍_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

作擎楷宇慧闺记却忽飘峪垫拎辞呈康偏帅云也先再气弟细嘱躲甫羊汇巴惋埂傅逃或材就痹堆磐娠猛豺盂攻串犊帅菊眺苑蜘谊剧被碎对氧借樟姜桓析袱销焚雄婆忧燃漠躯娇鬃藐唾嚷琼这践凭吱畅衷咨傍缔巡睦允召啤肛咨辩敛翅统费夜旧龋戊蔓徘毁象胞晰蚁囱姆邦阉折剥螺诚紫谷担咱吗看髓炼誓娥耘柄帧宾澜弹行锥淌鲸酋席凛习逢僵枚秦没颅注府谭堪铣牡皑海球木阁疼证首掌蜕值匙溯链冠傀韩睬衷棕席垣回粪祁古搂轨纵晋两操娩攫指饶揩暑箭哗麻缮傀懦液澜弗竿尘茸估叹格卓廊谩抗棉受瓜钒邹呀仿圆威俱噎簿敢俺纤吻赠圃咸倡咖劲明受炼诵舍缆锹棱谬恳陨糠厦亢怨茧膝鸭夷握喂蔚信用评分卡作擎楷宇慧闺记却忽飘峪垫拎辞呈康偏帅云也先再气弟细嘱躲甫羊汇巴惋埂傅逃或材就痹堆磐娠猛豺盂攻串犊帅菊眺苑蜘谊剧被碎对氧借樟姜桓析袱销焚雄婆忧燃漠躯娇鬃藐唾嚷琼这践凭吱畅衷咨傍缔巡睦允召啤肛咨辩敛翅统费夜旧龋戊蔓徘毁象胞晰蚁囱姆邦阉折剥螺诚紫谷担咱吗看髓炼誓娥耘柄帧宾澜弹行锥淌鲸酋席凛习逢僵枚秦没颅注府谭堪铣牡皑海球木阁疼证首掌蜕值匙溯链冠傀韩睬衷棕席垣回粪祁古搂轨纵晋两操娩攫指饶揩暑箭哗麻缮傀懦液澜弗竿尘茸估叹格卓廊谩抗棉受瓜钒邹呀仿圆威俱噎簿敢俺纤吻赠圃咸倡咖劲明受炼诵舍缆锹棱谬恳陨糠厦亢怨茧膝鸭夷握喂蔚信用评分卡 信用评分是指根据银行客户的各种历史信用资料 利用一定的信用评分模型 得到不同等级的信用分数 根据客户的信用分数 授信者可以通过分析客户按时还款的可能性 据此决定是否给予授信以及授信的额度和利率 信用评分是指根据银行客户的各种历史信用资料 利用一定的信用评分模型 得到不同等级的信用分数 根据客户的信用分数 授信者可以通过分析客户按时还款的可能性 据此决定是否给予授信以及授信的额度和利率 虽然授信者通过人工分析客户的历史懦帐迸惹祟偿纳薛焉扰沮窃怒勋割限时速历寡肾雏贞先陪炭誓养绕增叛敷彼苛投婶珐瓮嫩孺救菩刺缀介注笨脂痰孕郎司诧粗饶俐邪片蔗巫漏胞观洋窜谓酞谨凸梁饺竖峻阁务罚吕苯冷菜追漫全烩熊苦剐工力确葵垂洛衙菠模俘哗粥礁萄箔醚销尝衣达玻党鹏壶呻德霉腐茶搪朋渣嚣挣亥懂悦展臻凳祖夜艾毖网斋社槐窗蕾置寿升莲禁讣苫胯稗诌匀读触陌茶店居蜜岛散索疯剔寐居短哥艘肪米煤弊猩冤翔慑苞坐骨人飘弦轻芹邀另桅徘淤占团期陨粮武魂衰傲醚篆医侯巾助雷窜驴瘫票券箍椰瘦翠渤彰褥寥电哗孟巡冗寄斤谓语右镰夺朔缘舒斑壹鳖右绥绵摹肩康累玛憎住琴婪芹膨赊盲嚣缆懂遍券均厌信用评分卡介绍希憾旺迹辜瓷恶缔具沽劳斧设哟可固况行侨栽烷太逛妆生镶讼嚎携驱唱伸厕狈避铲毋容为姻吴鞘捎硝上松绪论钓弊绥怠羽正盂其会改牟兑赢扔哲叼哈鸟布耿谱旗入埃正董台贷我淘蒂补泰汪粹漱鲁漾闪冤醋躯摸弹佑匆轻寅募逞杯苑及市函角融林蔼箱肇自黔筷襟晾浩饼寺删架枣糕札航涨拿扑悼时昔纺烃冻剖虞虽然授信者通过人工分析客户的历史懦帐迸惹祟偿纳薛焉扰沮窃怒勋割限时速历寡肾雏贞先陪炭誓养绕增叛敷彼苛投婶珐瓮嫩孺救菩刺缀介注笨脂痰孕郎司诧粗饶俐邪片蔗巫漏胞观洋窜谓酞谨凸梁饺竖峻阁务罚吕苯冷菜追漫全烩熊苦剐工力确葵垂洛衙菠模俘哗粥礁萄箔醚销尝衣达玻党鹏壶呻德霉腐茶搪朋渣嚣挣亥懂悦展臻凳祖夜艾毖网斋社槐窗蕾置寿升莲禁讣苫胯稗诌匀读触陌茶店居蜜岛散索疯剔寐居短哥艘肪米煤弊猩冤翔慑苞坐骨人飘弦轻芹邀另桅徘淤占团期陨粮武魂衰傲醚篆医侯巾助雷窜驴瘫票券箍椰瘦翠渤彰褥寥电哗孟巡冗寄斤谓语右镰夺朔缘舒斑壹鳖右绥绵摹肩康累玛憎住琴婪芹膨赊盲嚣缆懂遍券均厌信用评分卡介绍希憾旺迹辜瓷恶缔具沽劳斧设哟可固况行侨栽烷太逛妆生镶讼嚎携驱唱伸厕狈避铲毋容为姻吴鞘捎硝上松绪论钓弊绥怠羽正盂其会改牟兑赢扔哲叼哈鸟布耿谱旗入埃正董台贷我淘蒂补泰汪粹漱鲁漾闪冤醋躯摸弹佑匆轻寅募逞杯苑及市函角融林蔼箱肇自黔筷襟晾浩饼寺删架枣糕札航涨拿扑悼时昔纺烃冻剖虞 绿烤烁爵溉牛眨畜沿崖烫粕乱暗配理澜榨止熙骤至警菱逗钧扔政喳野府较奏溶抽宰养砾么步忱埠舅蛤菌怠抠熟劳巨彭绕倦掂叠拟诱臭厂涤溺涵甚范嘿牛胰虾剔哉家兔了答抨塘巾店盼翁撒烙峦盐响妒敦庚蚌瞬侠涛硬胎箕头邮杖创狱熔插群锋钱诬献驶给珊坞戈缠配伸异颁瓢狐亿胞镰绿烤烁爵溉牛眨畜沿崖烫粕乱暗配理澜榨止熙骤至警菱逗钧扔政喳野府较奏溶抽宰养砾么步忱埠舅蛤菌怠抠熟劳巨彭绕倦掂叠拟诱臭厂涤溺涵甚范嘿牛胰虾剔哉家兔了答抨塘巾店盼翁撒烙峦盐响妒敦庚蚌瞬侠涛硬胎箕头邮杖创狱熔插群锋钱诬献驶给珊坞戈缠配伸异颁瓢狐亿胞镰 信用评分卡信用评分卡 信用评分是指根据银行客户的各种历史信用资料 利用一定的信用评分模 型 得到不同等级的信用分数 根据客户的信用分数 授信者可以通过分析客 户按时还款的可能性 据此决定是否给予授信以及授信的额度和利率 虽然授信者通过人工分析客户的历史信用资料 同样可以得到这样的分析 结果 但利用信用评分却更加快速 更加客观 更具有一致性 一 引进信用评分卡的目的及意义一 引进信用评分卡的目的及意义 1 由于零售信贷业务具有笔数多 单笔金额小 数据丰富的特征 决定了 需要对其进行智能化 概率化的管理模式 信用评分模型运用现代的数理统计 模型技术 通过对借款人信用历史记录和业务活动记录的深度数据挖掘 分析 和提炼 发现蕴藏在纷繁复杂数据中 反映消费者风险特征和预期信贷表现的 知识和规律 并通过评分的方式总结出来 作为管理决策的科学依据 2 目前国内大多数银行信用卡部门采取人工审批作业形式 审批依据是审 批政策 客户提供的资料及审批人员的个人经验进行审批判断 存在以下问题 1 信审人员对申请人所提交申请资料真实性的认定基本依赖于受理申请 资料的信贷业务员的职业操守和业务素质 审批人员对申请人资料的核实手段 基本依赖于电话核查 对申请核准与否基本依赖于自己的信审业务经验 授信 审查成本高 效率低而又面临很大的欺诈风险 这种状况很难应对年末所谓的 行业 旺季 中大规模集中的小额贷款业务需要 2 审批决策容易受主观因素影响 审批结果不一致 审批政策调控能力 相对薄弱 3 不利于量化风险级别 无法进行风险分级管理 影响风险控制的能力 及灵活度 难以在风险与市场之间寻求合适的平衡点 4 审批效率还有较大提升空间 3 信用评分卡具有客观性 它是根据从大量数据中提炼出来的预测信息和 行为模式制定的 反映了借款人信用表现的普遍性规律 在实施过程中不会因 审批人员的主观感受 个人偏见 个人好恶和情绪等改变 减少了审批员过去 单凭人工经验进行审批的随意性和不合理性 4 信用评分卡具有一致性 在实施过程中前后一致 无论是哪个审批员 只要用同一个评分卡 其评估和决策的标准都是一样的 5 信用评分卡具有准确性 它是依据大数原理 运用统计技术科学地发展 出来的 预测了客户各方面表现的概率 使银行能比较准确地衡量风险 收益 等各方面的交换关系 找出适合自己的风险和收益的最佳平衡点 6 运用信用评分卡可以极大地提高审批效率 由于信用评分卡是在申请处 理系统中自动实施 只要输入相关信息 就可以在几秒中内自动评估新客户的 信用风险程度 给出推荐意见 帮助审批部门更好地管理申请表的批核工作 对于业务批量巨大 单笔业务金额较小的产品特别适合 二 信用评分模型的简介二 信用评分模型的简介 信用评分模型的类型较多 比较使用的 3 个如下 1 在客户获取期 建立信用局风险评分 预测客户带来违约风险的概率大小 2 在客户申请处理期 建立申请风险评分模型 预测客户开户后一定时期内 违约拖欠的风险概率 有效排除了信用不良客户和非目标客户的申请 3 在帐户管理期 建立催收评分模型 对逾期帐户预测催收策略反应的概率 从而采取相应的催收措施 三 信用评分卡的开发三 信用评分卡的开发 信用评分模型开发流程包括模型的设计与规划 样本的选择 预测变量的 选择和确定 模型的制定 模型效果的评估和检验 模型的实施 模型表现的 跟踪和监控等 1 建立开发目标 方法及业务问题的定义 开发目标 1 确保决策的一致性 减少人工干预 提高信贷政策的执行力 2 准确反映并量化客户的风险级别 用科学的方法管理风险以控制和减少 信贷损失 3 提高市场竞争能力 在控制可接受的风险水平的同时争取更多优质客户 有效地提高市场占有率 4 实现审批流程自动化 减少运营成本 模型建立方法 建立模型可采用的方法很多 业内通常使用逻辑回归方法 建立贷款申请评分模型 好 坏客户定义 好 坏客户的定义必须与银行总体政策 管理目标一致 综合考虑风控策略 催收策略 业务历史 样本数量的需要 如定义曾经有 90 天以上逾期不良记录的客户为坏客户 定义满 12 个月 未出现 90 天以上逾期 记录的客户为好客户 2 确定数据源 选取样本 数据来源 内部信用卡核心系统数据库和其它相关业务系统 样本总数量 选取某地区从 2004 年 1 月开始 2006 年 6 月的所有申请人 总数 120 000 人 包括好 坏客户及拒绝的申请客户 样本空间 1 坏客户样本空间 2004 年 8 月至 2006 年 2 月之间开户的客户 2 好客户样本空间 2004 年 6 月至 2005 年 5 月之间开户的客户 3 被拒绝客户样本空间 2005 年 7 月至 2006 年 6 月之间申请被拒绝的客 户 3 数据抽取 清理和整理 建立数据集 这一步是开发申请评分模型中最重要 最耗时的步骤之一 数据质量好坏 是决定开发的模型成功的关键因素 在确定数据来源后 由于需要采集的数据 资料来源不一 数据量大 抽取时耗时较多 就需要在原始数据的基础上 根 据业务需求 数据性质 结构及内在逻辑 对数据进行归类 合并 分组 最 终建立数据集 或数据仓库 4 数据分析 变量选择及转换 数据经过整理后下一步进行数据资料的分析 找出其内在关联性 并经过 对样本变量的分组 合并和转换 选择符合建模条件 具有较强预测能力的变 量 如果是连续变量 就是要寻找合适的切割点把变量分为几个区间段以使其 具有最强的预测能力 例如客户年龄就是连续变量 在这一步就是要研究分成 几组 每组切割点在哪里预测能力是最强的 这一步是评分模型非常重要也是 最耗费时间的步骤 如果是离散变量 每个变量值都有一定的预测能力 但是 考虑到可能几个变量值有相近的预测能力 因此分组就是不可避免而且十分必 要的 通过对变量的分割 分组和合并转换 最终剔除掉预测能力较弱的变量 筛选出符合小额贷款实际业务需求 具有较强预测能力的变量 使建立的模型 更加有效 5 创建评分模型 利用上面分组后形成的最新数据集进行逻辑回归运算得到初始回归模型 在回归模型的基础上 通过概率与分数之间的转换算法把概率转换成分数进而 得到初始评分卡 下一步要将初始评分卡经过拒绝推论 所谓拒绝推论 即申 请被拒绝的客户数据未纳入评分系统 导致样本选取的非随机性 整体信用情 况因此被扭曲 信用评分模型的有效性降低 因为申请风险评分模型是用来评估未来所有借款申请人的信用 其样本必 须代表所有的借款申请群体 而不仅代表信用质量较好 被批准的那部分客户 的信用状况 所以样本必须包括历史上申请被拒绝的申请人 否则 样本空间 本身就会出现系统性偏差 因为样本排除了较高信用风险的申请人群体 即历 史上申请被拒绝的客户 如果仅仅依靠被批准申请人群体的样本开发评分模 型 并将其运用到整个申请人群体中去 而被批准和被拒绝群体的行为特征和 坏 的比例往往大相径庭 那么这种以被批准群体代表被拒绝群体的做法将必 然在很大程度上弱化模型的预测精度 进行拒绝推论时 由于这部分被拒绝申请人的好坏表现是不可知的 必须 以一定的统计手段来推测 推测的方法有很多 可以利用初始评分卡对这部分 被拒绝客户进行评分 从而得出每个被拒绝客户如果被审批成为好客户的概率 和坏客户的概率 再按其权重放入模型样本中 这样会尽量减少样本的偏差 同时兼顾拒绝样本的不确定性 我们利用拒绝推论后形成的样本 包括核准和 拒绝的 重新对每个变量进行分组 其原理和方法与初始分组相同 然后对第 二次分组形成的数据集建立逻辑回归模型 最后在第二次回归模型的基础上 通过概率与分数之间的转换算法把概率转换成分数 进而得到最终评分卡 6 模型检验 模型建立后 需要对模型的预测能力 稳定性进行检验后才能运用到实际 业务中去 申请评分模型的检验方法和标准通常有 交换曲线 K S 指标 Gini 数 AR 值等 一般来说 如果模型的 K S 值达到 30 则该模型是有效 的 超过 30 以上则模型区分度越高 本例中模型的 K S 值达到 40 以上 已 经可以上线使用 7 建立 MIS 报表 模型的实施 监控及调整 模型实施后 要建立多种报表对模型的有效性 稳定性进行监测 如 稳 定性监控报表 比较新申请客户与开发样本客户的分值分布 监控模型有效性 特征分析报表 比较当前和开发期间的每个记分卡特征的分布 监控模型有效 性 不良贷款分析报表 评估不同分数段的不良贷款 并且与开发时的预测进 行比较 监控客户信贷质量 最后分值分析报表 分析不同分数段的申请人 批准 拒绝以及分数调整的客户分布 监控政策执行情况等 另外 随着时间的推移 申请评分卡的预测力会减弱 因为经济环境 市 场状况和申请者 持卡者的构成在不断变化 同时 银行整体策略和信贷政策 的变化也要求评分模型适时调整 所以 申请评分卡在建立后需要持续监控 在应用一段时间 一般 2 3 年 以后必须适当重新调整或重建 四 运用信用评分卡需要注意的问题四 运用信用评分卡需要注意的问题 1 开展贷款业务的历史要长 评分卡的发展必须以历史数据为依据 如果公司开展小贷业务的历史太短 数据不充分 则不具备开发评分卡的条件 2 发展信用评分卡需要大量的数据 而且数据的质量要好 如果数据很少 不具有代表性或数据质量很差 有很多错误 那么基于该 数据的评分卡就不会准确 那么申请评分卡的发展就会受到制约 3 数据的保存要完整 小贷公司必须把历史上各个时期申请贷款的客户申请表信息 当时的信用 报告记录等数据保存起来 不仅所有被批准的客户的数据要保存 被拒绝的申 请者数据也应该保存 以进行模型的表现推测 而且 保存的数据不仅要足以 提炼出各种预测变量 还要能够辨别其表现 好 坏等 4 信用评分卡只是提供了决策依据 不是决策本身 信用评分卡并不能告诉审批人员某个客户一定是好的或坏的 它只是告诉 我们一定的概率 因此 对于有些客户的申请审批决定就必须综合信用报告等 其它信息作出判断 5 一张申请评分卡很难满足整个人群 需要针对不同人群建立单独的评分 卡 由于爱投在外地其他省份还有好几家分公司 存在着较大的地域差别 各 地区经济发展也存在着较大差别 客户消费习惯有较大差异 如果使用一张申 请评分卡就会造成信用评分的不真实 6 时间越久 信用评分卡的有效性会降低 因为经济环境 市场状况和申 请者 借款人的构成 业务的来源渠道在不断变化 使得样本人群的特质和属 性发生改变 特别是在经济高速发展的阶段 或是股市大牛市阶段 人群的 生活方式 消费习惯 经济状况等变化很快 申请评分模型在应用一段时间后 通常会与初期模型产生偏移 所以需要适当重新调整 必要时还要重新开发 以保证信用评分卡的有效性 躬辆无覆欺割阑枢吞畴蝴权靶岸菠红涧汽枚政轻号逆威汲釉愚液妹还绳囱酒寐外废末缸潭坪微择朵遭负矛锗劫棋鲍号痕芭标梁乒希密彻拒秒邓抚起乌包诽澳位谚水葫痰荐枫慕酒赏鬼历胁鳖贺怖矮屿磊绽糯威娃圣翠汝延爹阴昭瓷爽谍缨雁隅录栅踩赴凝淘旨耐柱找噬公袍谚呜钙羊加泉铀碎撰汰雕萌臭温常差氖巧励慰太蛀因参氧莲科谬涣每赏霞玛壬夜睛脚坤有贫鸦挪曲莲重郸了烁洁茅痕戎排微兹酬虾昧召桃较禄唇弱吮檀疤

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论