高中生物《蛋白质的合成与运输》素材1 中图版必修1_第1页
高中生物《蛋白质的合成与运输》素材1 中图版必修1_第2页
高中生物《蛋白质的合成与运输》素材1 中图版必修1_第3页
高中生物《蛋白质的合成与运输》素材1 中图版必修1_第4页
高中生物《蛋白质的合成与运输》素材1 中图版必修1_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 线粒体线粒体 mitochondrion mitochondrion 线粒体是 1850 年发现的 1898 年命名 线粒体由两层膜包被 外膜平滑 内膜向内折叠 形成嵴 两层膜之间有腔 线粒体中央是基质 基质内含 有与三羧酸循环所需的全部酶类 内膜上具有呼吸链酶系及 ATP 酶复合体 线粒体是细胞内氧化磷酸化和形成 ATP 的主要场 所 有细胞 动力工厂 power plant 之称 另外 线粒体有自身的 DNA 和遗传体系 但线 粒体基因组的基因数量有限 因此 线粒体只是一种半自主性的细胞器 线粒体的形状多种多样 一般呈线状 也有粒状或短线状 线粒体的直径一般在 0 5 1 0 m 在长度上变化很大 一般为 1 5 3 m 长的可达 10 m 人的成纤维细胞 的线粒体则更长 可达 40 m 不同组织在不同条件下有时会出现体积异常膨大的线粒体 称为巨型线粒体 megamitochondria 在多数细胞中 线粒体均匀分布在整个细胞质中 但在某些些细胞中 线粒体的分布是不均 一的 有时线粒体聚集在细胞质的边缘 在细胞质中 线粒体 常常集中在代谢活跃的区域 因为这些区域需要较多的 ATP 如肌细胞的肌纤维中有很多线粒体 另外 在精细胞 鞭毛 纤毛和肾小管细胞的基部都是线粒体分布较多的地方 线粒体除了较多分布在需要 ATP 的 区域外 也较为集中的分布在有较多氧化反应底物的区 域 如脂肪滴 因为脂肪滴中有许多 要被氧化的脂肪 形态与分布 线粒体一般呈粒状或杆状 但因生物种类和生理状态而异 可呈环形 哑铃形 线状 分杈状或其它形状 主要化学成分是蛋白质和脂类 其中蛋白质占线粒体干重的 65 70 脂类占 25 30 一般直径 0 5 1 m 长 1 5 3 0 m 在胰脏外分泌细胞中可长达 10 20 m 称巨线粒体 数目一般数百到数千个 植物因有叶绿体的缘故 线粒体数目相 对较少 肝细胞约 1300 个线粒体 占细胞体积的 20 单细胞鞭毛藻仅 1 个 酵母细胞具 有一个大型分支的线粒体 巨大变形中达 50 万个 许多哺乳动物成熟的红细胞中无线粒体 通常结合在维管上 分布在细胞功能旺盛的区域 如在肝细胞中呈均匀分布 在肾细胞中 靠近微血管 呈平行或栅状排列 肠表皮细胞中呈两极性分布 集中在顶端和基部 在精 子中分布在鞭毛中区 线粒体在细胞质中可以向功能旺盛的区域迁移 微管是其导轨 由 马达蛋白提供动力 超微结构 线粒体由内外两层膜封闭 包括外膜 内膜 膜间隙和基质四个功能区隔 在肝细胞 线粒体中各功能区隔蛋白质的含量依次为 基质 67 内膜 21 外 8 膜 膜间隙 4 1 外膜 out membrane 含 40 的脂类和 60 的蛋白质 具有孔蛋白 porin 构成的 亲水通道 允许分子量为 5KD 以下的分子通过 1KD 以下的分子可自由通过 标志酶为单 胺氧化酶 它是包围在线粒体外面的一层单位膜结构 厚 6nm 平整光滑 上面有较大的 孔蛋白 可允许相对分子质量在 5kDa 左右的分子通过 外膜上还有一些合成脂的酶以及将 脂转变成可进一步在基质中代谢的酶 2 内膜 inner membrane 含 100 种以上的多肽 蛋白质和脂类的比例高于 3 1 心磷脂含量高 达 20 缺乏胆固醇 类似于细菌 通透性很低 仅允许不带电荷的小分 子物质通过 大分子和离子通过内膜时需要特殊的转运系统 如 丙酮酸和焦磷酸是利用 2 H 梯度协同运输 线粒体氧化磷酸化的电子传递链位于内膜 因此从能量转换角度来说 内膜起主要的作用 内膜的标志酶为细胞色素 C 氧化酶 它是位于外膜内层的一层单位膜 结构 厚约 6nm 内膜对物质的通透性很低 只有不带电的小分子物质才能通过 内膜向 内折褶形成许多嵴 大大增加了内膜的表面积 内膜含有三类功能性蛋白 呼吸链中进行 氧化反应的酶 ATP 合成酶复合物 一些特殊的运输蛋白 调节基质中代谢代谢物的 输出和输入 3 膜间隙 intermembrane space 是内外膜之间的腔隙 延伸至嵴的轴心部 腔隙宽 约 6 8nm 由于外膜具有大量亲水孔道与细胞质相通 因此膜间隙的 pH 值与细胞质的相似 标志酶为腺苷酸激酶 它是内膜和嵴包围着的线粒体内部空间 含有很多蛋白质和脂类 催 化三羧酸循环中脂肪酸和丙酮酸氧化的酶类 也都存在于基质中 此外 还含有线粒体 DNA 线粒体核糖体 tRNAs rRNAs 以及线粒体基因表达的各种酶 基质中的标志酶是苹 果酸脱氢酶 4 基质 matrix 为内膜和嵴包围的空间 除糖酵解在细胞质中进行外 其他的生物 氧化过程都在线粒体中进行 催化三羧酸循环 脂肪酸和丙酮酸氧化的酶类均位于基质中 其标志酶为苹果酸脱氢酶 基质具有一套完整的转录和翻译体系 包括线粒体 DNA mtDNA 70S 型核糖体 tRNAs rRNA DNA 聚合酶 氨基酸活化酶等 基质中还含 有纤维丝和电子密度很大的致密颗粒状物质 内含 Ca2 Mg2 Zn2 等离子 线粒体内 膜向基质折褶形成的结构称作嵴 cristae 嵴的形成使内膜的表面积大大增加 嵴有两种 排列方式 一是片状 lamellar 另一是管状 tubular 在高等动物细胞中主要是片状的 排列 多数垂直于线粒体长轴 在原生动物和植物中常见的是管状排列 线粒体嵴的数目 形态和排列在不同种类的细胞中差别很大 一般说需能多的细胞 不仅线粒体多 而且线粒 体嵴的数目也多 线粒体内膜的嵴上有许多排列规则的颗粒称为线粒体基粒 elementary particle 每个基粒间相距约 10 nm 基粒又称偶联因子 1 coupling factor 1 简称 F1 实 际是 ATP 合酶 ATP synthase 又叫 F0 F1 ATP 酶复合体 是一个多组分的复合物 线粒体的半自主性 1963 年 M 和 S Nass 发现线粒体 DNA mtDNA 后 人们又在线粒体中发现了 RNA DNA 聚合酶 RNA 聚合酶 tRNA 核糖体 氨基酸活化酶等进行 DNA 复制 转录和蛋 白质翻译的全套装备 说明线粒体具有独立的遗传体系 虽然线粒体也能合成蛋白质 但是合成能力有限 线粒体 1000 多种蛋白质中 自身合 成的仅十余种 线粒体的核糖体蛋白 氨酰 tRNA 合成酶 许多结构蛋白 都是核基因编 码 在细胞质中合成后 定向转运到线粒体的 因此称线粒体为半自主细胞器 利用标记氨基酸培养细胞 用氯霉素和放线菌酮分别抑制线粒体和细胞质蛋白质合成 的方法 发现人的线粒体 DNA 编码的多肽为细胞色素 c 氧化酶的 3 个亚基 F0 的 2 个亚基 NADH 脱氢酶的 7 个亚基和细胞色素 b 等 13 条多肽 此外线粒体 DNA 还能合成 12S 和 16SrRNA 及 22 种 tRNA mtDNA 分子为环状双链 DNA 分子 外环为重链 H 内环为轻链 L 基因排列非常 紧凑 除与 mtDNA 复制及转录有关的一小段区域外 无内含子序列 每个线粒体含数个 m tDNA 动物 m tDNA 约 16 20kb 大多数基因由 H 链转录 包括 2 个 rRNA 14 个 tRNA 和 12 个编码多肽的 mRNA L 链编码另外 8 个 tRNA 和一条多肽链 mtDNA 上的基因相互 连接或仅间隔几个核苷酸序列 一些多肽基因相互重叠 几乎所有阅读框都缺少非翻译 3 区域 很多基因没有完整的终止密码 而仅以 T 或 TA 结尾 mRNA 的终止信号是在转录后 加工时加上去的 线粒体在形态 染色反应 化学组成 物理性质 活动状态 遗传体系等方面 都很 像细菌 所以人们推测线粒体起源于内共生 按照这种观点 需氧细菌被原始真核细胞吞 噬以后 有可能在长期互利共生中演化形成了现在的线粒体 在进化过程中好氧细菌逐步 丧失了独立性 并将大量遗传信息转移到了宿主细胞中 形成了线粒体的半自主性 线粒体遗传体系确实具有许多和细菌相似的特征 如 DNA 为环形分子 无内含子 核糖体为 70S 型 RNA 聚合酶被溴化乙锭抑制不被放线菌素 D 所抑制 tRNA 氨酰 基 tRNA 合成酶不同于细胞质中的 蛋白质合成的起始氨酰基 tRNA 是 N 甲酰甲硫氨酰 tRNA 对细菌蛋白质合成抑制剂氯霉素敏感对细胞质蛋白合成抑制剂放线菌酮不敏感 此外哺乳动物 mtDNA 的遗传密码与通用遗传密码有以下区别 UGA 不是终止信号 而是色氨酸的密码 多肽内部的甲硫氨酸由 AUG 和 AUA 两个密码子编码 起始甲硫氨酸 由 AUG AUA AUU 和 AUC 四个密码子编码 AGA AGG 不是精氨酸的密码子 而是终止密 码子 线粒体密码系统中有 4 个终止密码子 UAA UAG AGA AGG mtDNA 表现为母系遗传 其突变率高于核 DNA 并且缺乏修复能力 有些遗传病 如 Leber 遗传性视神经病 肌阵挛性癫痫等均与线粒体基因突变有关 线粒体的增殖 线粒体的增殖是通过已有的线粒体的分裂 有以下几种形式 1 间壁分离 分裂时先由内膜向中心皱褶 将线粒体分类两个 常见于鼠肝和植物产 生组织中 2 收缩后分离 分裂时通过线粒体中部缢缩并向两端不断拉长然后分裂为两个 见于 蕨类和酵母线粒体中 3 出芽 见于酵母和藓类植物 线粒体出现小芽 脱落后长大 发育为线粒体 线粒体为线状 长杆状 卵圆形或圆形小体 外被双层界膜 外界膜平滑 内界膜则 折成长短不等的嵴并附有基粒 内外界膜之间为线粒体的外室 与嵴内隙相连 内界膜内 侧为内室 基质室 在合成甾类激素的内分泌细胞 如肾上腺皮质细胞 卵甾滤泡细胞 睾丸的 Leydig 细胞等 线粒体嵴呈小管状 内外界膜的通透性不同 外界膜的通透性高 可容许多种物质通过 而内界膜则构成明显的通透屏障 使一些物质如蔗糖和 NADH 全然不 能通过 而其他物质如 Na 和 Ca 2 等也只有借助于主动运输才能通过 线粒体的基质含 有电子致密的无结构颗粒 基质颗粒 与二价阳离子如 Ca2 及 Mg2 具有高度亲和力 基 质中进行着 氧化 氧化脱羧 枸橼酸循环以及尿素循环等过程 在线粒体的外界膜内含 有单胺氧化酶以及糖和脂质代谢的各种转移酶 在内界膜上则为呼吸链和氧化磷酸化的酶 类 线粒体是对各种损伤最为敏感的细胞器之一 在细胞损伤时最常见的病理改变可概括 为线粒体数量 大小和结构的改变 1 数量的改变 线粒体的平均寿命约为 10 天 衰亡的线粒体可通过保留的线粒体直接 分裂为二予以补充 在病理状态下 线粒体的增生实际上是对慢性非特异性细胞损伤的适 应性反应或细胞功能升高的表现 例如心瓣膜病时的心肌线粒体 周围血液循环障碍伴间 4 歇性跛行时的骨骼肌线粒体的呈增生现象 线粒体数量减少则见于急性细胞损伤时线粒体崩解或自溶的情况下 持续约 15 分钟 慢性损伤时由于线粒体逐渐增生 故一般不见线粒体减少 甚至反而增多 此外 线粒体 的减少也是细胞未成熟和 或 去分化的表现 2 大小改变细胞损伤时最常见的改变为线粒体肿大 根据线粒体的受累部位可分为基 质型肿胀和嵴型肿胀二种类型 而以前者为常见 基质型肿胀时线粒体变大变圆 基质变 浅 嵴变短变少甚至消失 图 1 9 在极度肿胀时 线粒体可转化为小空泡状结构 此 型肿胀为细胞水肿的部分改变 光学显微镜下所谓的浊肿细胞中所见的细颗粒即肿大的线 粒体 嵴型肿较少见 此时的肿胀局限于嵴内隙 使扁平的嵴变成烧瓶状乃至空泡状 而 基质则更显得致密 嵴型肿胀一般为可复性 但当膜的损伤加重时 可经过混合型而过渡 为基质型 线粒体为对损伤极为敏感的细胞器 其肿胀可由多种损伤因子引起 其中最常见的为 缺氧 此外 微生物毒素 各种毒物 射线以及渗透压改变等亦可引起 但轻度肿大有时 可能为其功能升高的表现 较明显的肿胀则恒为细胞受损的表现 但只要损伤不过重 损 伤因子的作用不过长 肿胀仍可恢复 线粒体的增大有时是器官功能负荷增加引起的适应性肥大 此时线粒体的数量也常增 多 例如见于器官肥大时 反之 器官萎缩时 线粒体则缩小 变少 3 结构的改变 线粒体嵴是能量代谢的明显指征 但嵴的增多未必均伴有呼吸链酶的增 加 嵴的膜和酶平行增多反映细胞的功能负荷加重 为一种适应状态的表现 反之 如嵴 的膜和酶的增多不相平行 则是胞浆适应功能障碍的表现 此时细胞功能并不升高 在急性细胞损伤时 大多为中毒或缺氧 线粒体的嵴被破坏 慢性亚致死性细胞损伤 或营养缺乏时 线粒体的蛋白合成受障 以致线粒体几乎不再能形成新的嵴 根据细胞损伤的种类和性质 可在线粒体基质或嵴内形成病理性包含物 这些包含物 有的呈晶形或副晶形 可能由蛋白构成 如在线粒体性肌病或进行性肌营养不良时所见 有的呈无定形的电子致密物 常见于细胞趋于坏死时 乃线粒体成分崩解的产物 脂质和 蛋白质 被视为线粒体不可复性损伤的表现 线粒体损伤的另一种常见改变为髓鞘样层状 结构的形成 这是线粒体膜损伤的结果 衰亡或受损的线粒体 最终由细胞的自噬过程加以处理并最后被溶酶体酶所降解消化 相关名词 蛋白质寻靶 protein targeting 游离核糖体合成的蛋白质在细胞内的定位是由前体蛋白本身具有的引导信号决定的 不同类型的引导信号可以引导蛋白质定位到特定的细胞器 如线粒体 叶绿体 细胞核和 过氧化物酶体等 这些蛋白质在游离核糖体上合成释放之后需要自己寻找目的地 因此称为 蛋白质寻靶 翻译后转运 post translational translocation 游离核糖体上合成的蛋白质必须等蛋白质完全合成并释放到胞质溶胶后才能被转运 所 以将这种转运方式称为翻译后转运 通过这种方式转运的蛋白质包 括线粒体 叶绿体和细 胞核的部分蛋白 以及过氧化物酶体的全部蛋白等 在游离核糖体上合成的蛋白质中有相当 一部分直接存在于胞质溶胶中 包括细胞骨架蛋白 各种反应体系的酶或蛋白等 5 蛋白质分选 protein sorting 主要是指膜结合核糖体上合成的蛋白质 通过信号肽 在翻译的同时进入内质网 然后 经过各种加工和修饰 使不同去向的蛋白质带上不同的标记 最后经过高尔基体反面网络进 行分选 包装到不同类型的小泡 并运送到目的地 包括内质网 高尔基体 溶酶体 细胞 质膜 细胞外和核膜等 广义的蛋白质分选也包括在游离核糖体上合成的蛋白质的定位 共翻译转运 co translational translocation 膜结合核糖体上合成的蛋白质 在它们进行翻译的同时就开始了转运 主要是通过定位 信号 一边翻译 一边进入内质网 然后再进行进一步的加工和转移 由于这种转运定位是 在蛋白质翻译的同时进行的 故称为共翻译转运 在膜结合核糖体上合成的蛋白质通过信号 肽 经过连续的膜 系统转运分选才能到达最终的目的地 这一过程又称为蛋白质分选 或蛋 白质运输 protein trafficking 游离核糖体 free ribosomes 在蛋白质合成的全过程中 结合有 mRNA 的核糖体都是游离存在的 实际上是与细胞骨 架结合在一起的 不与内质网结合 这种核糖体之所以不与内质网结合 是因为被合成的 蛋白质中没有特定的信号 与核糖体无关 膜结合核糖体 membrane bound ribosomes 结合有 mRNA 并进行蛋白质合成的核糖体在合成蛋白质的初始阶段处于游离状态 但是 随着肽链的合成 核糖体被引导到内质网上与内质网结合在一起 这种核糖体称为膜结合核 糖体 这种核糖体与内质网的结合是由合成的新生肽 N 端的信号序列决定的 而与核糖体自身 无关 导肽 leading peptide 又称转运肽 transit peptide 或导向序列 targeting sequence 它是游离核糖体上 合成的蛋白质的 N 端信号 导肽是新生蛋白 N 端一段大约 20 80 个氨基酸的肽链 通常带正电荷的碱性氨基酸 特别是精氨酸和赖氨酸 含量较为丰富 如果它们被不带电荷的氨基酸取代就不起引导作 用 说明这些氨基酸对于蛋白质的定位具有重要作用 这些氨基酸分散于不带电荷的氨基 酸序列之间 转运肽序列中 不含有或基本不含有带负电荷的酸性氨基酸 并且有形成两性 螺旋的倾向 转运肽的这种特征性的结构有利于穿过线粒体的双层膜 不同的转运肽之 间没有同源 性 说明导肽的序列与识别的特异性有关 而与二级或高级结构无太大关系 导肽运送蛋白质时具有以下特点 需要受体 消耗 ATP 需要分子伴侣 要电 化学梯度驱动 要信号肽酶切除信号肽 通过接触点进入 非折叠形式运输 氧化 oxidation 葡萄糖 或糖原 在正常有氧的条件下 经氧化产生 CO2 和水 这个总过程称作糖的有 氧氧化 又称细胞氧化或生物氧化 整个过程分为三个阶段 糖氧化成丙酮酸 葡萄糖进 入细胞后经过一系列酶的催化反应 最后生成丙酮酸的过程 此过程在细胞质中进行 并 且是不耗能的过程 丙酮酸进入线粒体 在基质中脱羧生成乙酰 CoA 乙酰 CoA 进入 三羧酸循环 彻底氧化 糖酵解 glycolysis 葡萄糖在无氧条件下 生成丙酮酸的过程 此过程在细胞质中进行 并且是不耗氧的 过程 6 三羧酸循环 citric acid cycle 由乙酰 CoA 和草酰乙酸缩合成有三个羧基的柠檬酸 柠檬酸经一系列反应 一再氧化 脱羧 经 酮戊二酸 琥珀酸 再降解成草酰乙酸 而参与这一循环的丙酮酸的三个碳 原子 每循环一次 仅用去一分子乙酰基中的二碳单位 最后生成两分子的 CO2 并释放 出大量的能量 电子载体 electron carriers 在电子传递过程中与释放的电子结合并将电子传递下去的物质称为电子载体 参与传 递的电子载体有四种 黄素蛋白 细胞色素 铁硫蛋白和辅酶 Q 在这四类电子载体中 除了辅酶 Q 以外 接受和提供电子的氧化还原中心都是与蛋白相连的辅基 黄素蛋白 flavoproteins 黄素蛋白是由一条多肽结合 1 个辅基组成的酶类 结合的辅基可以是 FAD 或 FMN 它们 是维生素 B2 的衍生物 每个辅基能够接受和提供两个质子和电子 线粒体中的黄素蛋白主 要是电子传递链中 NADH 脱氢酶和 TCA 循环中的琥珀酸脱氢酶 细胞色素 cytochromes 细胞色素是含有血红素辅基的一类蛋白质 血红素基团是由卟啉环结合一个铁原子 铁 原子位于环的中央 构成的 与 NAD 和 FAD 不同 在氧化还原过程中 血红素基团的铁原子 可以传递单个的电子而不必成对传递 血红素中的铁通过 Fe3 和 Fe2 两种状态的变化传 递电子 在还原反应时 铁原子由 Fe3 状态转变成 Fe2 状态 在氧化反应中 铁由 Fe2 转 变成 Fe3 电子传递链中至少有五种类型的细胞色素 a a3 b c 和 c1 它们间的差异 在于血红素基团中取代基和蛋白质氨基酸序列的不同 铁硫蛋白 iron sulfur proteins Fe S protein 铁硫蛋白是含铁的蛋白质 也是细胞色素类蛋白 在铁硫蛋白分子的中央结合的不是血 红素而是铁和硫 称为铁 硫中心 iron sulfur centers 最常见的是在蛋白质的中央含有 四个原子 其中两个是铁 另两个是硫 称为 2Fe 2S 或在蛋白质的中央含有八个原子 其中 四个是 铁 另四个是硫 称为 4Fe 4S 并且通过硫与蛋白质的半胱氨酸残基相连 在铁硫 蛋白中尽管有多个铁原子的存在 但整个复合物一次只能接受一个电子 以及传递一个电子 并且也是靠 Fe3 Fe2 状态的循环变化传递电子 醌 uniquinone UQ 或辅酶 Q coenzyme Q 辅酶 Q 是一种脂溶性的分子 含有长长的疏水链 由五碳类戊二醇构成 如同黄素蛋 白 每一个醌能够接受和提供两个电子和质子 部分还原的称为半醌 完全还原的称为全醌 UQH2 氧还电位 oxidation reduction potentials redox potentials 由于不同的还原剂具有不同的电子传递电位 而氧化与还原又是偶联的 如 NAD 和 NADH 它 们的差别主要是电子数量不同 所以二者间就有一个 电位差 即氧还电位 构成氧化还原 的成对离子或分子 称为氧化还原对 或氧还对 redox pair 氧还电位在标准条件下测定 即得标准氧化还原电位 standard oxidation reduction potentials E0 标准氧化还 原电位的值越小 提供电子的能力越强 所谓标准条件是指 1M 反应浓度 25 pH 7 0 和 1 个大气压 测得的氧还电位用伏特 V 表示 7 呼吸链 respiratory chain 又称电子传递链 是线粒体内膜上一组酶的复合体 其功能是进行电子传递 H 的传递 及氧的利用 最后产生 H2O 和 ATP 复合物 I complex I 复合物 I 又称 NADH 脱氢酶 NADH dehydrogenase 或 NADH CoQ 还原酶复合物 功能是 催化一对电子从 NADH 传递给 CoQ 它是线粒体内膜中最大的蛋白复合物 是跨膜蛋白 也 是呼吸链中了解最少的复合物 哺乳动物的复合物 含有 42 种不同的亚基 总相对分子质 量差不多有 1000kDa 其中有 7 个亚基都是疏水的跨膜蛋白 由线粒体基因编码 复合物 含有黄素蛋白 FMN 和至少 6 个 铁硫中心 iron sulfur centers 一对电子从复合物 传 递时伴随着 4 个质子被传递到膜间隙 复合物 complex 复合物 又称为琥珀酸脱氢酶 succinate dehydrogenase 或琥珀酸 CoQ 酶复合物 功 能是催化电子从琥珀酸传递给辅酶 Q 由几个不同的多肽组成 其中有两个多肽组成琥珀酸 脱氢酶 并且是膜结合蛋白 复合物 参与的是低能电子传 递途径 将琥珀酸的电子经 FAD 传给 CoQ 复合物 传递电子时不伴随氢的传递 复合物 complex 复合物 又称 CoQH2 细胞色素 c 还原酶复合物 总相对分子质量为 250kDa 含 1 个 细胞色素 c1 1 个细胞色素 b 有两个血红素基团 1 个铁硫蛋白 其中细胞色素 b 由线粒 体基因编码 复合物 催化电子从辅酶 Q 向细胞色素 c 传递 并且每传递一对电子 同时传 递 4 个 H 到膜间隙 复合物 complex 复合物 又称细胞色素 c 氧化酶 cytochrome c oxidase 总相对分子质量为 200kDa 复合物 是以二聚体的形式存在 它的亚基 和 都含有 4 个氧化还原中心 redox active centers 和两个 a 型细胞色素 含有 1 个 a 1 个 a3 和两个 Cu 主要功能 是将电子从细胞色素 c 传递给 O2 分子 生成 H2O 4cyt c2 O2 4H 4cyt c3 2H2O 每传递一对电子 要从线粒体基质中摄取 4 个质子 其中两个质子用于水的形成 另两 个质子被跨膜转运到膜间隙 电化学梯度 electrochemical gradient 质子跨过内膜向膜间隙的转运也是一个生电作用 electrogenesis 即电压生成的过程 因为质子跨膜转运使得膜间隙积累了大量的质 子 建立了质子梯度 由于膜间隙质子梯度 的建立 使内膜两侧发生两个显著的变化 线粒体膜间隙产生大量的正电荷 而线粒体基 质产生大量的负电荷 使内膜两侧形成电位差 第二是两侧氢离子浓度的不同因而产 生 pH 梯度 pH 这两种梯度合称为电化学梯度 electrochemical gradient 线粒体内膜 两侧电化学梯度的建立 能够形成质子运动力 proton motive force p 只要有合适的 条件即可转变成化学能储存起来 电化学梯度 electrochemical gradient 质子跨过内膜向膜间隙的转运也是一个生电作用 electrogenesis 即电压生成的过程 因为质子跨膜转运使得膜间隙积累了大量的质 子 建立了质子梯度 由于膜间隙质子梯度 的建立 使内膜两侧发生两个显著的变化 线粒体膜间隙产生大量的正电荷 而线粒体基 质产生大量的负电荷 使内膜两侧形成电位差 第二是两侧氢离子浓度的不同因而产 生 pH 梯度 pH 这两种梯度合称为电化学梯度 electrochemical gradient 线粒体内膜 两侧电化学梯度的建立 能够形成质子运动力 proton motive force p 只要有合适的 条件即可转变成化学能储存起来 ATP 合酶 ATP synthase 8 ATP 或称 F0F1 复合物 F0F1 complexes 该酶在分离状态下具有 ATP 水解酶的活性 在结合状态下具有 ATP

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论