



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
用心 爱心 专心1 高二数学北师大版 文 选修高二数学北师大版 文 选修 1 1 1 1 第二章综合第二章综合 曲线与方程同步练曲线与方程同步练 习习 答题时间 100 分钟 一 选择题 每题 6 分 计 36 分 1 在直角坐标系中 AB 2a a 0 A B 两点分别在 x 轴 y 轴上移动 则 AB 的中点 M 的轨迹是 A 抛物线 B 双曲线 C 椭圆 D 圆 2 动点 P 及两定点 A 2 0 B 2 0 满足 PA PB 4 则 P 点的轨迹是 A 双曲线 B 双曲线的一支 C 射线 D 线段 AB 3 动点 P 到直线 x 4 0 的距离减去它到点 M 2 0 的距离之差等于 2 则动点 P 的轨 迹是 A 直线 B 椭圆 C 双曲线 D 抛物线 4 过椭圆 0 1 2 2 2 2 ba b y a x 上任意一点 M 作 x 轴的垂线 垂足是 N 则 MN 的中 点轨迹方程是 A 1 2 2 2 2 b y a x B 1 4 2 2 2 2 b y a x C 1 4 2 2 2 2 b y a x D 1 4 2 2 2 2 b y a x 5 经过抛物线pxy2 2 的焦点弦的中点轨迹是 A 抛物线 B 椭圆 C 双曲线 D 直线 6 已知点 P 在定圆 O 的圆内或圆周上 动圆 C 过 P 点和定圆 O 相切 则动圆 C 的圆心的 轨迹可能是 A 圆或椭圆或双曲线 B 两条射线或圆或抛物线 C 两条射线或圆或椭圆 D 椭圆或抛物线或双曲线 二 填空题 每题 6 分 计 24 分 7 动点 P 到两定点 0 1 0 1 的距离之和为22 则 P 点的轨迹方程是 8 动点 P 到定点 1 0 与定点 1 0 的距离之差为 2 则动点 P 的轨迹方程是 9 坐标平面上的两定点 A B 动点 P 若直线 PA PB 的斜率之积是定值 m 则 P 点的 轨迹可能是 1 椭圆 2 双曲线 3 抛物线 4 圆 5 直线 将正确的序号填在 横线上 10 已知椭圆的焦点 21 F F P 是椭圆上的动点 若延长PF1到 Q 使 PQ PF2 则动 点 Q 的轨迹是 三 计算题 40 分 11 一动圆过定点 A 1 0 且与定圆16 1 22 yx相切时 求动圆的圆心轨迹方 程 10 分 12 已知坐标平面上点 Q 2 0 和圆 C 1 22 yx 动点 M 到圆 C 的切线长与 MQ 的比等于常数 0 求动点 M 的轨迹方程 并说明轨迹的形状 15 分 用心 爱心 专心2 13 椭圆与双曲线有共同的焦点 0 1 0 1 21 FF 并且椭圆的长轴长是双曲线实轴长 的 2 倍 求椭圆和双曲线的交点的轨迹方程 15 分 用心 爱心 专心3 试题答案试题答案 一 选择题 1 D 解析 设 AB 的中点 M x y 则由平面几何定理得 OM 2 1 AB O 为坐 标原点 故有 22222 ayxayx 2 C 3 D 解析 由已知 动点 P 到 M 2 0 的距离等于它到定直线 x 2 的距离 由抛 物线定义可得答案 4 B 解析 设 M 00 yx 则 N 0 0 x MN 的中点是 P x y 则 2 2 0 0 0 0 yy y yxx 故 M x 2y 由 M 点在椭圆上得 1 4 2 2 2 2 b y a x 5 A 解析 设抛物线的焦点 F 0 2 p 弦 AB 的中点是 M x y 2211 yxByxA 由 A B 两点在抛物线上得 2 2 2 1 2 1 2 2 pxy pxy 2 212121 xxpyyyy 2 p x y k y p yy p2 xx yy k AF 2121 21 AB 由 2 p x pykk 2 AFAB 6 C 当点 P 在定圆 O 上时 圆 C 与圆 O 或内切或外切 O P C 三点共线 故此时轨 迹为两射线 当点 P 在圆 O 内时 非圆心 OP PC r 定值 轨迹为椭圆 当 P 与 O 重合时 圆心的轨迹是椭圆 故选 C 二 填空题 7 根据椭圆的定义可得轨迹方程是1 2 2 2 x y 8 y 0 x 1 9 设 A a 0 B a 0 P x y 则 222 maymxm ax y ax y 当 m0 时是双曲线 当 m 1 时 是圆 当 m 0 时是直线 故正确答案是 1 2 4 5 10 圆 由第一定义得 21 PFPF定值 12 PQPFPFPQ 定值 即 1Q F是定值 即动点 Q 到定点 1 F的距离是定值 用心 爱心 专心4 三 解答题 11 解 设动圆的圆心是 P x y 定圆的圆心是 1 0 由于定点 A 在定圆内部 故动圆与定圆只能是内切 所以 PA PB 4 由椭圆的定义知 动圆的圆心轨迹方程是 1 34 22 yx 12 解 设切点是 N 则 MQMN 即 2222 MQ r MO O 是坐标原点 设 M x y 将 M x y 代入得 222222 2 1yxyx 整理得 0 41 4 1 22222 xyx 当1 时 方程为 4 5 x 是一条直线 当1 时 方程为 22 2 22 2 2 1 31 1 2 yx 是圆 13 解 设椭圆与双曲线的交点是 P x y 椭圆的长轴长是 2a 则 aPFPFaPFPF2 2121 且 故 2 2121 PFPFPFPF 当 21
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高端热稳定剂项目可行性研究报告
- 钒渣钠化焙烧项目可行性研究报告
- 防汛知识培训笔记课件
- 防汛知识培训与演练课件
- 土石方工程施工协议
- 可再生能源投资机会研究
- 营销推广合作协议书模板
- 湖北省武汉市2025年九年级上学期数学月考试题附答案
- 电子合同格式4篇
- 设备租赁合同与设备租赁合同范本3篇
- 秋季慢性病知识讲座
- 2024年全国高考体育单招考试语文试卷试题(含答案详解)
- 《西方经济学》(下册)课程教案
- 小儿雾化吸入的健康宣教课件
- 电力系统运行方式分析和计算
- 法院送法进校园讲座
- 反比例函数 单元作业设计
- 病机中医学基础课件
- 公路技术状况评定标准
- 2022年四川雅安综合类事业单位招聘392人笔试备考题库及答案解析
- 老年人能力评估 能力评估
评论
0/150
提交评论