黑龙江省大庆外国语学校高中数学 第一章《1.3.1空间几何体的表面积和体积》教案 新人教A版必修2_第1页
黑龙江省大庆外国语学校高中数学 第一章《1.3.1空间几何体的表面积和体积》教案 新人教A版必修2_第2页
黑龙江省大庆外国语学校高中数学 第一章《1.3.1空间几何体的表面积和体积》教案 新人教A版必修2_第3页
黑龙江省大庆外国语学校高中数学 第一章《1.3.1空间几何体的表面积和体积》教案 新人教A版必修2_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 黑龙江省大庆外国语学校高一数学必修二第一章黑龙江省大庆外国语学校高一数学必修二第一章 1 3 1 1 3 1 空间几何体的空间几何体的 表面积和体积表面积和体积 教案教案 教学要求教学要求 了解柱 锥 台的表面积计算公式 能运用柱锥台的表面积公式进行计算和解决有 关实际问题 教学重点教学重点 运用公式解决问题 教学难点教学难点 理解计算公式的由来 教学过程教学过程 一 复习准备 一 复习准备 1 讨论 正方体 长方体的侧面展开图 正方体 长方体的表面积计算公式 2 讨论 圆柱 圆锥的侧面展开图 圆柱的侧面积公式 圆锥的侧面积公式 二 讲授新课 二 讲授新课 1 1 教学表面积计算公式的推导 教学表面积计算公式的推导 讨论 如何求棱柱 棱锥 棱台等多面体的表面积 展开成平面图形 各面面积和 练习 求各面都是边长为 10 的等边三角形的正四面体S ABC的表面积 一个三棱柱的底面是正三角形 边长为 4 侧棱与底面垂直 侧棱长 10 求其表面积 讨论 如何求圆柱 圆锥 圆台的侧面积及表面积 图 侧 表 圆柱圆柱 侧面展开图是矩形 长是圆柱底面圆周长 宽是圆柱的高 母线 S 2 S 2 其中为圆柱底面半径 圆柱侧 rl 圆柱表 r rl r 为母线长 l 圆锥圆锥 侧面展开图为一个扇形 半径是圆锥的母线 弧长等于圆锥 底面周长 侧面展开图扇形中心角为 S S 0 360 r l 圆锥侧 rl 其中为圆锥底面半径 为母线长 圆锥表 r rl rl 圆台圆台 侧面展开图是扇环 内弧长等于圆台上底周长 外弧长等于 圆台下底周长 侧面展开图扇环中心角为 S 0 360 Rr l 圆台侧 S rR l 圆台表 22 rrlRlR 练习 一个圆台 上 下底面半径分别为 10 20 母线与底面的夹 角为 60 求圆台的表面积 变式 求切割之前的圆锥的表面积 2 2 教学表面积公式的实际应用 教学表面积公式的实际应用 出示例 一圆台形花盆 盘口直径 20cm 盘底直径 15cm 底部渗水圆孔直径 1 5cm 盘壁 长 15cm 为美化外表而涂油漆 若每平方米用 100 毫升油漆 涂 200 个这样的花盘要多少油 漆 讨论 油漆位置 如何求花盆外壁表面积 列式 计算 变式训练 内外涂 练习 粉碎机的上料斗是正四棱台性 它的上 下底面边长分别为 80mm 440mm 高是 200mm 计算制造这样一个下料斗所需铁板的面积 3 3 小结小结 表面积公式及推导 实际应用问题 三 巩固练习 三 巩固练习 1 已知底面为正方形 侧棱长均是边长为 5 的正三角形的四棱锥 S ABCD 求其表面积 2 圆台的上下 两个底面半径为 10 20 平行于底面的截面把圆台侧面分成的两部分面积之比 为 1 1 求截面的半径 变式 r R 比为 p q 2 3 若一个圆锥的轴截面是等边三角形 其面积为 求这个圆锥的表面积 3 4 圆锥的底面半径为 2cm 高为 4cm 求圆锥的内接圆柱的侧面积的最大值 5 面积为 2 的菱形 绕其一边旋转一周所得几何体的表面积是多少 6 作业 P30 2 P32 习题 1 2 题 第二课时第二课时 1 3 1 柱体 锥体 台体的表面积与体积 二 教学教学要求要求 了解柱 锥 台的体积计算公式 能运用柱锥台的表面积公式及体积公式进行计 算和解决有关实际问题 教学重点教学重点 运用公式解决问题 教学难点教学难点 理解计算公式之间的关系 教学过程教学过程 一 复习准备 一 复习准备 1 提问 圆柱 圆锥 圆台的表面积计算公式 2 练习 正六棱锥的侧棱长为 6 底面边长为 4 求其表面积 3 提问 正方体 长方体 圆柱 圆锥的体积计算公式 二 讲授新课 二 讲授新课 1 1 教学柱锥台的体积计算公式 教学柱锥台的体积计算公式 讨论 等底 等高的棱柱 圆柱的体积关系 祖暅 g ng 祖冲之的儿子 原理 教材 P34 根据正方体 长方体 圆柱的体积公式 推测柱体的体积计算公式 给出柱体体积计算公式 S 为底面面积 h 为柱体的高 VSh 柱 2 VShr h 圆柱 讨论 等底 等高的圆柱与圆锥之间的体积关系 等底等高的圆锥 棱锥之间的体积关系 根据圆锥的体积公式公式 推测锥体的体积计算公式 给出锥体的体积计算公式 S 为底面面积 h 为高 1 3 VSh 锥 讨论 台体的上底面积 S 下底面积 S 高 h 由此如何计算切割前的锥体的高 如何计算台体的体积 给出台体的体积公式 S 分别上 下底面积 h 为高 1 3 VSS SS h 台 S r R 分别为圆台上底 下底半径 22 11 33 VSS SS hrrRRh 圆台 比较与发现 柱 锥 台的体积计算公式有何关系 从锥 台 柱的形状可以看出 当台体上底缩为一点时 台成为锥 当台体上底放大为 与下底相同时 台成为柱 因此只要分别令 S S 和 S 0 便可以从台体的体积公式得到柱 锥的相应公式 从而锥 柱的公式可以统一为台体的体积公式 讨论 侧面积公式是否也正确 圆柱 圆锥 圆台的侧面积和体积公式又可如何统一 2 2 教学体积公式计算的运用 教学体积公式计算的运用 出示例 一堆铁制六角螺帽 共重 11 6kg 底面六边形边长 12mm 内空直径 10mm 高 10mm 估算这堆螺帽多少个 铁的密度 7 8g cm3 讨论 六角螺帽的几何结构特征 如何求其体积 利用哪些数量关系求个数 列式计算 小结 体积计算公式 练习 将若干毫升水倒入底面半径为 2cm 的圆柱形容器中 量得水面高度为 6cm 若将这 些水倒入轴截面是正三角形的倒圆锥形容器中 求水面的高度 3 3 小结小结 柱锥台的体积公式及相关关系 公式实际运用 3 三 巩固练习 三 巩固练习 1 把三棱锥的高分成三等分 过这些分点且平行于三棱锥底面的平面 把三 棱锥分成三部分 求这三部分自上而下的体积之比 2 已知圆锥的侧面积是底面积的 2 倍 它的轴截面的面积为 4 求圆锥的体积 3 高为 12cm 的圆台 它的中截面面积为 225 cm2 体积为 2800cm3 求它的侧面积 4 仓库一角有谷一堆 呈 1 4 圆锥形 量得底面弧长 2 8m 母线长 2 2m 这堆谷多重 720kg m3 5 作业 P30 3 题 P32 习题 3 4 题 第三课时第三课时 1 3 2 球的体积和表面积 教学要求教学要求 了解球的表面积和体积计算公式 能运用柱锥台球的表面积公式及体积公式进行计 算和解决有关实际问题 教学重点教学重点 运用公式解决问题 教学难点教学难点 运用公式解决问题 教学过程教学过程 一 复习准备 一 复习准备 1 提问 柱 锥 台的体积计算公式 圆柱 圆锥的侧面积 表面积计算公式 2 两个平行于圆锥底面的平面将圆锥的高分成相等的三段 求圆锥分成的三部分的侧面积之 比 三部分的体积之比 二 讲授新课 二 讲授新课 1 1 教学球的表面积及体积计算公式 教学球的表面积及体积计算公式 讨论 大小变化的球 其体积 表面积与谁有关 给出公式 V S 4R2 R 为球的半径 球 3 4 3 R 球面 讨论 公式的特点 球面是否可展开为一个平面图形 证明的基本思想是 分割 求体积和 求极限 求得结果 以后的学习中再证明球的公 式 出示例 圆柱的底面直径与高都等于球的直径 求球的体积与圆柱体积之比 证明球的表 面积等于圆柱的侧面积 讨论 圆柱与球的位置关系 相切 几何量之间的关系 设球半径 R 则 师生共练 小结 公式的运用 变式 球的内切圆柱的体积 练习 一个气球的半径扩大 2 倍 那么它的表面积 体积分别扩大多少倍 2 2 体体积公式的实际应用 积公式的实际应用 出示例 一种空心钢球的质量是 142g 外径是 5 0cm 求它的内径 钢密度 7 9g cm3 讨论 如何求空心钢球的体积 列式计算 小结 体积应用问题 有一个倒圆锥形容器 它的轴截面是一个正三角形 在容器内放入一个半径为 R 的球 并 注入水 使水面与球正好相切 然后将球取出 求此时容器中水的深度 探究阿基米德的科学发现 图中所示的圆及其外切正方形绕图中由虚线表 示的对称轴旋转一周生成的几何体称为圆柱容球 在圆柱容球中 球的体积是 圆柱体积的 球的表面积也是圆柱全面积的 2 3 2 3 三 巩固练习 三 巩固练习 1 一个正方体的顶点都在球面上 它的棱长为 6cm 求这个球的表面积和体 积 2 如果球的体积是 V球 它的外切圆柱的体积是 V圆柱 B C A D 4 5 2 4 外切等边圆锥的体积是 V圆锥 求这三个几

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论