R软件做判别分析_第1页
R软件做判别分析_第2页
R软件做判别分析_第3页
R软件做判别分析_第4页
R软件做判别分析_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

R 软件做判别分析 1 距离判别 1 两样本 discriminiant distance function TrnX1 TrnX2 TstX NULL var equal FALSE if is null TstX TRUE TstX rbind TrnX1 TrnX2 if is vector TstX TRUE TstX t as matrix TstX else if is matrix TstX TRUE TstX as matrix TstX if is matrix TrnX1 TRUE TrnX1 as matrix TrnX1 if is matrix TrnX2 TRUE TrnX2 as matrix TrnX2 nx nrow TstX blong matrix rep 0 nx nrow 1 byrow TRUE dimnames list blong 1 nx mu1 colMeans TrnX1 mu2 colMeans TrnX2 if var equal TRUE var equal T S var rbind TrnX1 TrnX2 w mahalanobis TstX mu2 S mahalanobis TstX mu1 S else S1 var TrnX1 S2 var TrnX2 w 0 blong i 1 else blong i 2 blong 例1 数据 classX1 data frame x1 c 6 60 6 60 6 10 6 10 8 40 7 2 8 40 7 50 7 50 8 30 7 80 7 80 x2 c 39 00 39 00 47 00 47 00 32 00 6 0 113 00 52 00 52 00 113 00 172 00 172 00 x3 c 1 00 1 00 1 00 1 00 2 00 1 0 3 50 1 00 3 50 0 00 1 00 1 50 x4 c 6 00 6 00 6 00 6 00 7 50 7 0 6 00 6 00 7 50 7 50 3 50 3 00 x5 c 6 00 12 00 6 00 12 00 19 00 28 0 18 00 12 00 6 00 35 00 14 00 15 00 x6 c 0 12 0 12 0 08 0 08 0 35 0 3 0 15 0 16 0 16 0 12 0 21 0 21 x7 c 20 00 20 00 12 00 12 00 75 00 30 0 75 00 40 00 40 00 180 00 45 00 45 00 classX2 data frame x1 c 8 40 8 40 8 40 6 3 7 00 7 00 7 00 8 30 8 30 7 2 7 2 7 2 5 50 8 40 8 40 7 50 7 50 8 30 8 30 8 30 8 30 7 80 7 80 x2 c 32 0 32 00 32 00 11 0 8 00 8 00 8 00 161 00 161 0 6 0 6 0 6 0 6 00 113 00 113 00 52 00 52 00 97 00 97 00 89 00 56 00 172 00 283 00 x3 c 1 00 2 00 2 50 4 5 4 50 6 00 1 50 1 50 0 50 3 5 1 0 1 0 2 50 3 50 3 50 1 00 1 00 0 00 2 50 0 00 1 50 1 00 1 00 x4 c 5 00 9 00 4 00 7 5 4 50 7 50 6 00 4 00 2 50 4 0 3 0 6 0 3 00 4 50 4 50 6 00 7 50 6 00 6 00 6 00 6 00 3 50 4 50 x5 c 4 00 10 00 10 00 3 0 9 00 4 00 1 00 4 00 1 00 12 0 3 0 5 0 7 00 6 00 8 00 6 00 8 00 5 00 5 00 10 00 13 00 6 00 6 00 x6 c 0 35 0 35 0 35 0 2 0 25 0 25 0 25 0 08 0 08 0 30 0 3 0 3 0 18 0 15 0 15 0 16 0 16 0 15 0 15 0 16 0 25 0 21 0 18 x7 c 75 00 75 00 75 00 15 0 30 00 30 00 30 00 70 00 70 00 30 0 30 0 30 0 18 00 75 00 75 00 40 00 40 00 180 00 180 00 180 00 180 00 45 00 45 00 source discriminiant distance R discriminiant distance classX1 classX2 var equal TRUE discriminiant distance classX1 classX2 TrnX1 data frame X1 c 13 85 22 31 28 82 15 29 28 79 X2 c 2 79 4 67 4 63 3 54 4 90 X3 c 7 80 12 31 16 18 7 50 16 12 X4 c 49 60 47 80 62 15 43 20 58 10 TrnX2 data frame X1 c 2 18 3 85 11 40 3 66 12 10 X2 c 1 06 0 80 0 00 2 42 0 00 X3 c 1 22 4 06 3 50 2 14 5 68 X4 c 20 60 47 10 0 00 15 10 0 00 TrnX data frame X1 c 8 85 28 60 X2 c 3 38 2 40 X3 c 5 17 1 20 X4 c 26 10 127 0 discriminiant distance TrnX1 TrnX2 2 多样本 distinguish distance function TrnX TrnG TstX NULL var equal FALSE if is factor TrnG FALSE mx nrow TrnX mg nrow TrnG TrnX rbind TrnX TrnG TrnG factor rep 1 2 c mx mg if is null TstX TRUE TstX TrnX if is vector TstX TRUE TstX t as matrix TstX else if is matrix TstX TRUE TstX as matrix TstX if is matrix TrnX TRUE TrnX as matrix TrnX nx nrow TstX blong matrix rep 0 nx nrow 1 dimnames list blong 1 nx g length levels TrnG mu matrix 0 nrow g ncol ncol TrnX for i in 1 g mu i colMeans TrnX TrnG i D matrix 0 nrow g ncol nx if var equal TRUE var equal T for i in 1 g D i mahalanobis TstX mu i var TrnX else for i in 1 g D i mahalanobis TstX mu i var TrnX TrnG i for j in 1 nx dmin Inf for i in 1 g if D i j dmin dmin D i j blong j i blong 多总体距离判别 要求数据矩阵或数据框 X matrix c 34 16 7 44 1 12 7 87 95 19 69 30 33 06 6 34 1 08 6 77 94 08 69 70 36 26 9 24 1 04 8 97 97 30 68 80 40 17 13 45 1 43 13 88 101 2 66 2 50 06 23 03 2 83 23 74 112 52 63 3 33 24 6 24 1 18 22 9 160 01 65 4 32 22 4 22 1 06 20 7 124 7 68 7 41 15 10 08 2 32 32 84 172 06 65 85 53 04 25 74 4 06 34 87 152 03 63 5 38 03 11 2 6 07 27 84 146 32 66 8 34 03 5 41 0 07 5 2 90 10 69 5 32 11 3 02 0 09 3 14 85 15 70 8 44 12 15 12 1 08 15 15 103 12 64 8 54 17 25 03 2 11 25 15 110 14 63 7 28 07 2 01 0 07 3 02 81 22 68 3 nrow 15 ncol 6 byrow TRUE G gl 3 5 Y matrix c 50 22 6 66 1 08 22 54 170 6 65 2 34 64 7 33 1 11 7 78 95 16 69 3 33 42 6 22 1 12 22 95 160 31 68 3 44 02 15 36 1 07 16 45 105 3 64 2 nrow 4 ncol 6 byrow TRUE distinguish distance X G Y var equal TRUE Bayes 判别 1 两样本 discriminiant bayes function TrnX1 TrnX2 rate 1 TstX NULL var equal FALSE if is null TstX TRUE TstX rbind TrnX1 TrnX2 if is vector TstX TRUE TstX t as matrix TstX else if is matrix TstX TRUE TstX as matrix TstX if is matrix TrnX1 TRUE TrnX1 as matrix TrnX1 if is matrix TrnX2 TRUE TrnX2 as matrix TrnX2 nx nrow TstX blong matrix rep 0 nx nrow 1 byrow TRUE dimnames list blong 1 nx mu1 colMeans TrnX1 mu2 colMeans TrnX2 if var equal TRUE var equal T S var rbind TrnX1 TrnX2 beta 2 log rate w mahalanobis TstX mu2 S mahalanobis TstX mu1 S else S1 var TrnX1 S2 var TrnX2 beta 2 log rate log det S1 det S2 w beta blong i 1 else blong i 2 blong 例 2 两样本 TrnX1 matrix c 24 8 24 1 26 6 23 5 25 5 27 4 2 0 2 4 3 0 1 9 2 1 3 1 ncol 2 TrnX2 matrix c 22 1 21 6 22 0 22 8 22 7 21 5 22 1 21 4 0 7 1 4 0 8 1 6 1 5 1 0 1 2 1 3 ncol 2 source discriminiant bayes R discriminiant bayes TrnX1 TrnX2 rate 8 6 var equal TRUE 2 多样本 distinguish bayes function TrnX TrnG p rep 1 length levels TrnG TstX NULL var equal FALSE if is factor TrnG FALSE mx nrow TrnX mg nrow TrnG TrnX rbind TrnX TrnG TrnG factor rep 1 2 c mx mg if is null TstX TRUE TstX TrnX if is vector TstX TRUE TstX t as matrix TstX else if is matrix TstX TRUE TstX as matrix TstX if is matrix TrnX TRUE TrnX as matrix TrnX nx nrow TstX blong matrix rep 0 nx nrow 1 dimnames list blong 1 nx g length levels TrnG mu matrix 0 nrow g ncol ncol TrnX for i in 1 g mu i colMeans TrnX TrnG i D matrix 0 nrow g ncol nx if var equal TRUE var equal T for i in 1 g d2 mahalanobis TstX mu i var TrnX D i d2 2 log p i else for i in 1 g S var TrnX TrnG i d2 mahalanobis TstX mu i S D i d2 2 log p i log det S for j in 1 nx dmin Inf for i in 1 g if D i j dmin dmin D i j blong j i blong X matrix c 34 16 7 44 1 12 7 87 95 19 69 30 33 06 6 34 1 08 6 77 94 08 69 70 36 26 9 24 1 04 8 97 97 30 68 80 40 17 13 45 1 43 13 88 101 2 66 2 50 06 23 03 2 83 23 74 112 52 63 3 33 24 6 24 1 18 22 9 160 01 65 4 32 22 4 22 1 06 20 7 124 7 68 7 41 15 10 08 2 32 32 84 172 06 65 85 53 04 25 74 4 06 34 87 152 03 63 5 38 03 11 2 6 07 27 84 146 32 66 8 34 03 5 41 0 07 5 2 90 10 69 5 32 11 3 02 0 09 3 14 85 15 70 8 44 12 15 12 1 08 15 15 103 12 64 8 54 17 25 03 2 11 25 15 110 14 63 7 28 07 2 01 0 07 3 02 81 22 68 3 nrow 15 ncol 6 byrow TRUE G gl 3 5 Y matrix c 50 22 6 66 1 08 22 54 170 6 65 2 34 64 7 33 1 11 7 78 95 16 69 3 33 42 6 22 1 12 22 95 160 31 68 3 44 02 15 36 1 07 16 45 105 3 64 2 nrow 4 ncol 6 byrow TRUE distinguish bayes X G p rep 1 length levels G Y var equal TRUE 3 Fisher判别 discriminiant fisher function TrnX1 TrnX2 TstX NULL if is null TstX TRUE TstX rbind TrnX1 TrnX2 if is vector TstX TRUE TstX t as matrix TstX else if is matrix TstX TRUE TstX as matrix TstX if is matrix TrnX1 TRUE TrnX1 as matrix TrnX1 if is matrix TrnX2 TRUE TrnX2 as matrix TrnX2 nx nrow TstX blong matrix rep 0 nx nrow 1 byrow TRUE dimnames list blong 1 nx n1 nrow TrnX1 n2 nrow TrnX2 mu1 colMeans TrnX1 mu2 colMeans TrnX2 S n1 1 var TrnX1 n2 1 var TrnX2 mu n1 n1 n2 mu1 n2 n1 n2 mu2 w TstX rep 1 nx o mu solve S mu2 mu1 for i in 1 nx if w i 0 blong i 1 else blong i 2 blong 多总体 Fisher 判别 要求数据框 library MASS X matrix c 34 16 7 44 1 12 7 87 95 19 69 30 33 06 6 34 1 08 6 77 94 08 69 70 36 26 9 24 1 04 8 97 97 30 68 80 40 17 13 45 1 43 13 88 101 2 66 2 50 06 23 03 2 83 23 74 112 52 63 3 33 24 6 24 1 18 22 9 160 01 65 4 32 22 4 22 1 06 20 7 124 7 68 7 41 15 10 08 2 32 32 84 172 06 65 85 53 04 25 74 4 06 34 87 152 03 63 5 38 03 11 2 6 07 27 84 146 32 66 8 34 03 5 41 0 07 5 2 90 10 69 5 32 11 3 02 0 09 3 14 85 15 70 8 44 12 15 12 1 08 15 15 103 12 64 8 54 17 25 03 2 11 25 15 110 14 63 7 28 07 2 01 0 07 3 02 81 22 68 3 nrow 15 ncol 6 byrow TRUE Y data frame X Sp rep c 1 2 3 rep 5 3 Train data frame matrix c 50 22 6 66 1 08 22 54 170 6 65 2 34 64 7 33 1 11 7 78 95 16 69 3 33 42 6 22 1 12 22 95 160 31 68 3 44 02 15 36 1 07 16 45 105 3 64 2 nrow 4 ncol 6 byrow TRUE z lda Sp Y predict z Train 多总体 Bayes 判别 要求数据矩阵或数据框 X matrix c 34 16 7 44 1 12 7 87 95 19 69 30 33 06 6 34 1 08 6 77 94 08 69 70 36 26 9 24 1 04 8 97 97 30 68 80 40 17 13 45 1 43 13 88 101 2 66 2 50 06 23 03 2 83 23 74 112 52 63 3 33 24 6 24 1 18 22 9 160 01 65 4 32 22 4 22 1 06 20 7 124 7 68 7 41 15 10 08 2 32 32 84 172 06 65 85

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论