八年级数学教案康晶_第1页
八年级数学教案康晶_第2页
八年级数学教案康晶_第3页
八年级数学教案康晶_第4页
八年级数学教案康晶_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一章第一章 三角形的证明三角形的证明 课 题 1 1 等腰三角形 1 教学目标 1 能证明等腰三角形的性质定理和判定定理 2 了解分析的思考方法 掌握用综合法证明的格式 3 感受证明的必要性 感受合情推理和演绎推理都是认识事物的途径 教学重点等腰三角形的性质定理和判定定理 教学难点等腰三角形的性质定理和判定定理 教 学 过 程复 备 一 预习指导 1 用 的过程 叫做证明 经过 称为定理 2 证明与图形有关的命题 一般步骤有哪些 3 我们初中数学中 选用了哪些真命题作为基本事实 4 什么叫做等腰三角形 等腰三角形的定义 5 我们曾经利用等腰三角形的对称性 发现了等腰三角形的哪些性质 6 这些性质都是真命题吗 你能否用从基本事实出发 对它们进行证明 二 效果检测 1 证明 等腰三角形的两个底角相等 点拨 要证明两个角相等 可以构造一对全等三角形 图中的 B C AB AC 要分别是这两个三角形的角与边 如果用 SAS 证明 如 何作辅助线 讨论 还有不同的证明方法吗 2 等边对等角 用符号语言如何表示 三 布置任务 师生互动探究 思考与探索 问题问题 1 1 证明 等腰三角形的顶角平分线 底边上的中线 底边上的高 互相重合 点拨 上面的证明你作的辅助性是等腰三角形的什么线 接着刚才的证明 你一定能发现 三线合一 的真相 请按照证明题的三个步骤 进行证明 思考 三线合一 用符号语言如何表示 问题问题 2 如何证明 等腰三角形的两个底角相等 的逆命题是正确的 写出它的逆命题 画出图形 写出已知 求证 并进行证明 思考 思考 等角对等边 一符号语言如何表示 问题问题 3 已知 如图 EAC 是 ABC 的外角 AD 平分 EAC 且 AD BC 求证 AB AC 分析 要证 AB AC 只需证 B C 已知 EAD DAC 只需证 EAD B DAC C 证明 A B C D E 四 小组交流 学生展示 已知 如图 在 ABC 中 ABC ACB 的平分线相交于点 O MN 过点 O 且 MN BC 交 AB AC 于点 M N 1 求证 MN BM CN 2 如果 AB 20 BC 12 AC 18 求 AMN 的周长 五 课堂训练 拓展延伸 1 在问题 3 中 如果 AB AC AD BC 那么 AD 平分 EAC 吗 如果结论 成立 你能证明这个结论吗 2 在问题 3 中 如果 AB AC AD 平分 EAC 那么 AD BC 吗 如果结论 成立 你能证明这个结论吗 六 课堂小结 本节课你在数学知识 数学方法 学习方法方面有何收获 还有什么疑 惑 随堂练习 课外作业 下一节课 预习要求 教 后 记 课 题 1 1 等腰三角形 2 教学目标 1 能证明等边三角形的性质定理和判定定理 2 能证明线段垂直平分线的性质定理和判定定理 3 进一步了解分析法和综合法 教学重点等边三角形的性质定理和判定定理 教学难点等边三角形的性质定理和判定定理 教 学 过 程复 备 一 预习指导 1 等腰三角形性质定理 2 等腰三角形判定定理 3 等边三角形是特殊的等腰三角形 特殊在哪里 4 线段垂直平分线的性质定理 A N B O M C 二 效果检测 1 证明 等边三角形的每个内角都是 60 分析 要证等边三角形的每个内角都是 60 就要先根据等边对等角证 明三个角相等 2 证明 线段垂直平分线上的点到线段两个端点的距离相等 三 布置任务 师生互动探究 问题问题 1 1 三个角都相等的三角形是等边三角形 分析 由等边三角形的的定义可知 三边相等的三角形是等边三角形 根据 等角对等边 可以证得 问题问题 2 证明 到一条线段两个端点距离相等的点在这条线段的垂直平分 线上 四 小组交流 学生展示 1 证明 如果一个等腰三角形中有一个角等于 60 那么这个三角形是 等边三角形 2 已知 如图 ABC 是等边三角形 DE BC 分别交 AB AC 于 点 D E 求证 ADE 是等边三角形 五 课堂训练 拓展延伸 已知 如图 ABC CDE 是等边三角形 B C D 在同一条直线上 AC BE 交于点 M AD CE 交于点 N 证明 BCE ACD MCE NCD N M E D CB A 拓展 MNC 是什么形状 证明你的想法 A BC DE 六 课堂小结 本节课你在数学知识 数学方法 学习方法方面有何收获 还有什么疑 惑 随堂练习 课外作业 下一节课 预习要求 教 后 记 课 题 1 2 直角三角形 1 教学目标 1 能证明并会应用直角三角形全等的 HL 判定定理 2 体会转化的数学思想 3 逐步学会分析的思考方法 发展演绎推理的能力 教学重点证明直角三角形全等的 HL 判定定理及其应用 教学难点证明直角三角形全等的 HL 判定定理及其应用 教 学 过 程复 备 一 预习指导 1 直角三角形全等的条件有哪些 2 你认为具备这样条件的两个直角三角形一定全等吗 为什么 思考思考 我们知道 斜边和一对锐角相等的两个直角三角形 可以根据 AAS 判定它们全等 一对直角边和一对锐角相等的两个直角三角形 可 以根据 ASA 或 AAS 判定它们全等 两对直角边相等的两个直角三角形 可以根据 SAS 判定它们全等 如果两个直角三角形的斜边和一对直角边相等 边边角 这两个三角形是 否可能全等呢 二 效果检测 1 如图 1 1 在 ABC 与 A B C 中 若 AB A B AC A C C C 90 这时 Rt ABC 与 Rt A B C 是否全等 D B C A E F O A B C DE 导学 把 Rt ABC 与 Rt A B C 拼合在一起 如图 1 2 因为 ACB A C B 90 所以 B C C B 三点在一条直线上 因此 ABB 是一个等腰三角形 可以知道 B B 根据 AAS 公理 可知 Rt A B C Rt ABC 请你按照上面的分析 尝试着完成本题的证明过程 证明 反思反思 1 为什么要说明 B C C B 三点在一条 直线上呢 2 前面我们曾用画图剪拼的方法 比较感性的获 得 斜边和一条直角边对应相等的两个直角三角形的 全等 但是 由于观察并不一定可靠 通过今天严 谨的逻辑证明 我们确信这是一条数学真理 3 根据勾股定理 SAS 公理你还有其他证明方法吗 三 布置任务 师生互动探究 问题 1 证明 在直角三角形中 30 角所对的直角边等于斜边的一半 点拨点拨 1 我们可以构造如图 1 2 的图形中 在等边三角形 AB B 中 如果 BAC 30 那么 ABC 是一个直角三角形 且 BC AB 2 1 四 小组交流 学生展示 问题 2 如图 在 ABC 中 已知 D 是 BC 中点 DE AB DF AC 垂 足分别是 E F DE DF 求证 AB AC 点拨 点拨 要证 AB AC 只要分别证 AE AF BE CF 因而只要用 HL 证 明 Rt AED Rt AFD Rt BED Rt CFD 六 课堂训练 拓展延伸 问题 3 如图 CD AB BE AC 垂足分别是 D E BE CD 相交于点 O 如果 AB AC 哪么图中有几对全等的 直角三角形 取其中的一对予以证明 拓展 直线 AO 与线段 BC 有何关系 请说明理由 七 课堂小结 1 图形的 拆 把一个等腰三角形拆成两个全等的直角三角形 和 拼 把两个直角三角形拼成一个等腰三角形 两种方法体现了同一种思想 转化思想转化思想 即把待证的问题转化为可证的问题 2 本节课我们证明了一般三角形所不具有的直角三角形的特殊的判定定 理 特殊的直角三角形的特殊性质 你还能列举一些关于特殊与一般的 例子吗 随堂练习 课外作业 下一节课 预习要求 教 后 记 A D C P B E O A D P B E O O E DC B A 课 题 1 2 直角三角形 2 教学目标 1 能证明角平分线的性质定理和逆定理 三角形三条角平分线交与一点 2 从简单的数学例子中了解反证法的含义 3 逐步学会分析的思考方法 发展演绎推理的能力 教学重点角平分线的性质定理和逆定理 教学难点角平分线的性质定理和逆定理 教 学 过 程复 备 一 预习指导 1 直角三角形全等的判定方法 2 角平分线的性质定理 3 你能用什么方法作出 AOB 的平分线 OC 二 效果检测 1 证明 角平分线上的点到这个角两边的距离相等 已知 求证 证明 思考 上述定理用符号语言如何让表示 2 证明 角的内部到角的两边距离相等的点 在这个角的平分线上 已知 求证 证明 思考 上述定理用符号语言如何让表示 三 布置任务 师生互动探究 问题 1 如果一个点到角的两边的距离不相等 那么这个点不在这个角 的平分线上 你认为这个结论正确吗 如果正确 你能证明吗 点拨点拨 假设该点在角的平分线上 则它到这个角的两边的距离 这与已知条件 这个点到角的两边的距离不相等 矛盾 所以 链接链接 这种证题模式称为反证法 应用反证法证明的主要三步是 否定结论 推导出矛盾 结论成立 实施的具体步骤是 第一步 反设 作出与求证结论相反的假设 第二步 归谬 将反设作为条件 由此通过正确推理导出矛盾 第三步 结论 说明反设不成立 从而肯定原命题成立 牛顿曾经说 反证法是数学家最精当的武器之一 一般来讲 反证法常用来证明的题型有 命题的结论以 否定形式 至少 或 至多 唯一 无限 形式出现的命题 问题 2 如图 ABC 的角平分线 AD BE 相交于点 O 点 O 到 ABC 各边的 距离相等吗 点 O 在 C 的平分线上吗 为什么 点拨 点拨 先运用角平分线性质定理 然后应用其逆定理 思考 你能用一个命题概括这一题吗 四 小组交流 学生展示 问题 3 如图 已知 ABC 的外角 CBD 和 BCE 的平分线相交于点 F 求证 点 F 在 DAE 的平分线上 2 如图 在 ABC 中 C 90 度 点 D 在 BC 上 DE 垂 直平分 AB 且 DE DC 求 B 的度数 点拨 应用角平分线判定定理和相等垂直平分线性质定理 五 课堂训练 拓展延伸 问题 3 如图 已知 B C 90 M 是 BC 中点 MN AD 若 1 2 求证 3 4 拓展 你还有什么发现 六 课堂小结 1 角平分线性质定理及其逆定理的内容是什么 我们是如何证明的 2 三角形的三条角平分线交于一点吗 我是然后证明的 3 反证法的一般步骤有哪些 4 你还有哪些困惑 随堂练习 课外作业 第二章第二章 一元一次不等式与一元一次不等式组一元一次不等式与一元一次不等式组 2 1 不等关系 教学目的和要求 教学目的和要求 理解不等式的概念 感受生活中存在的不等关系 教学重点和难点 教学重点和难点 重点 重点 对不等式概念的理解 难点 难点 怎样建立量与量之间的不等关系 从问题中来 到问题中去 从问题中来 到问题中去 1 如图 1 1 用用根长度均为 l 的绳子 分别围成一个正方形和圆 1 如果要使正方形的面积不大于 25 2 那么绳长 l 应满足怎样的关系式 2 如果要使圆的面积大于 100 2 那么绳长 l 应满足怎样的关系式 3 当 l 8 时 正方形和圆的面积哪个大 l 12 呢 4 改变 l 的取值再试一试 在这个过程中你能得到什么启发 E D C B A 1 2 3 4 N M D C B A 分析解答 在上面的问题中 所围成的正方形的面积可以表示为 圆的面积可以表示 2 4 l 为 2 2 l 1 要使正方形的面积不大于 25 2 就是 即 25 4 2 l 25 16 2 l 2 要使圆的面积大于 100 2 就是 100 2 2 l 即 100 4 2 l 3 当 l 8 时 正方形的面积为 圆的面积为 4 16 8 2 2 cm 1 5 4 8 2 2 cm 4 5 1 此时圆的面积大 当 l 12 时 正方形的面积为 圆的面积为 9 16 12 2 2 cm 5 11 4 12 2 2 cm 9 11 5 此时还是圆的面积大 4 不论怎样改变 l 的取值 通过计算发现 总是圆的面积大 因此 我们可以猜想 用长度增色为 l 的两根绳子分别围成一个正方形和圆 无论 l 取何值 圆的面积 总大于正方形的面积 即 4 2 l 16 2 l 2 1 通过测量一棵树的树围 树干的周长 可能计算出它的树龄 通常规定以树干离 地面 1 5m 的地方作为测量部位 某树栽种时的树围为 5 以后树围每年增加约 3 这棵树至少要生长多少年其树围才能超过 2 4m 只列关系式 2 燃放某种礼花弹时 为了确保安全 人在点燃导火线后要在燃放前转移到 10m 以外的安全区域 已知导火线的燃烧速度为 0 2m s 人离开的速度为 4m s 导火线的 长度 x m 应满足怎样的关系式 答案 1 设这棵树生长 x 年其树围才能超过 2 4m 则 5 3x 240 2 人离开 10m 以外的地方需要的时间 应小于导火线燃烧的时间 只有这样才能 保证人的安全 4 10 2 0 x 分析巩固练习 分析巩固练习 用不等式表示 1 a 的相反数是正数 2 m 与 2 的差小于 3 2 3 x 的与 4 的和不是正数 3 1 4 y 的一半与 x 的 2 倍的和不小于 3 解答 1 a 的相反数是 a 正数是比零大的数 所以 a 的相反数是正数 就是 a 0 2 m 与 2 的差 就是 m 2 差小于 即是 m 2 3 2 3 2 3 x 的 就是x x 的与 4 的和不是正数 就是x 4 0 3 1 3 1 3 1 3 1 4 y 的一半 不是y x 的 2 倍 就是 2x 不小于 3 即指大于或等于 3 故 2 1 y 的一半与 x 的 2 倍的和不小于 就是y 2x 3 2 1 3 下列各数 4 0 5 2 3 其中使不等式 1 成立是 2 1 2 x A 4 5 2 B 5 2 3 C 0 3 D 5 2 2 1 答案 D 4 有理数 a b 在数轴上的位置如图 1 2 所示 所的值 ba ba A 0 B 0 C 0 D 0 答案 B 小结提问 快速回答 小结提问 快速回答 1 表示不等式关系的符号有哪些 2 用适当的符号表示下列关系 1 x 的 5 倍与 3 的差比 x 的 4 倍大 2 a 的的相反数是非负数 4 1 3 x 的 3 倍不小于 y 的 8 倍 3 下列不等式中 总能成立的是 A 0 B C 2a a D a 2 a0 2 a 2 a 作业要求 作业本 2 2 不等式的基本性质不等式的基本性质 一 教学目标一 教学目标 1 经历不等式基本性质的探索过程 初步体会不等式与等式的异同 2 掌握不等式的基本性质 二 教学重难点教学重难点 不等式的基本性质的掌握与应用 三 教学过程设计三 教学过程设计 1 比较归纳 产生新知比较归纳 产生新知 我们知道 在等式的两边都加上或都减去同一个数或整式 等式不变 请问 如果在不等式的两边都加上或都减去同一个整式 那么结果会怎样 请兴几例 试一试 并与同伴交流 类比等式的基本性质得出猜想 不等式的结果不变 试举几例验证猜想 如 3 7 3 1 4 7 1 8 4 8 所以 3 1 7 1 3 5 2 7 5 2 2 2 所以 3 5 7 5 3 a 7 a 3 7 3 a 7 a 等 都能说明猜想的正确性 2 探索交流 概括性质探索交流 概括性质 完成下列填空 2 3 2 5 3 5 2 3 2 1 3 1 2 3 2 5 3 5 你发现了什么 请再举几例试试 与同伴交流 通过计算结果不难发现 前两个空填 后三个空填 得出不等式的基本性质 不等式的基本性质 1 不等式的两边都加上 或减去 同一个整式 不等号的方向不变 不等式的基本性质 2 不等式的两边都乘以 或除以 同一个正数 不等号的方向不变 不等式的基本性质 3 不等式的两边都乘以 或除以 同一个负数 不等号的方向改变 通过自我探索与具体的例子使学生加深对不等式性质的印象 3 练习巩固 促进迁移练习巩固 促进迁移 1 1 用 号或 号填空 并简说理由 6 2 3 2 6 2 3 2 6 2 3 2 6 2 3 2 2 如果 a b 则 2 利用不等式的基本性质 填 或 1 若 a b 则 2a 1 2b 1 2 若 10 则 y 8 3 若 a b 且 c 0 则 ac c bc c 4 若 a 0 b 0 c 0 a b c 0 4 巩固应用 拓展研究巩固应用 拓展研究 1 按照下列条件 写出仍能成立的不等式 并说明根据 1 a b 两边都加上 4 2 3a b 两边都除以 3 3 a 3b 两边都乘以 2 4 a 2b 两边都加上 c 2 根据不等式的性质 把下列不等式化为 x a 或 x a 的形式 a 为常数 5 课内深化 提升能力课内深化 提升能力 比较下列各题两式的大小 6 回顾联系 形成结构回顾联系 形成结构 想一想 本节课学了哪些知识 有哪些性质 在运用性质时应注意什么 通过问题的回答 引导学生自主总结 把分散的知识系统化 结构化 形成知识网络 完善学生的认知结构 加深对所学知识的理解 7 课外作业与拓展课外作业与拓展 课外作业 课本第 9 页 习题 1 2 2 3 不等式的解集不等式的解集 一 教学目标一 教学目标 1 理解不等式解与解集的意义 2 了解不等式解集的数轴表示 二 教学重难点教学重难点 重点是区分不等式解与解集的概念 难点是在数轴上表示不等式的解集 三 教学过程设计教学过程设计 1 创设情景 导出问题创设情景 导出问题 课本问题 燃放某中礼花弹时 为了确保安全 人在点燃导火线后要在燃放前 10m 以 外的安全区域 已知导火线的燃烧速度为 0 02m s 人离开的速度为 4m s 那么导火线的 长度应为多少厘米 在建立不等式之前 先让学生分析清楚问题中量与量之间的关系 为了使人有足 够的时间到达安全区域 导火线燃烧的时间应大于人到达安全区域的时间 设导火线的长度应为 x cm 根据题意 得 即 x 5 2 探索交流 得出概念探索交流 得出概念 1 想一想 1 你能找出几个使不等式 x 5 成立的 x 的值吗 2 x 5 6 8 能使不等式 x 5 成立吗 字母可以表示任何数 但对于满足 x 5 中的字母 x 它能够取任意数吗 如果不能 它能取哪些数呢 启发学生动手验证 动脑思考 并从中初步体会不等式解的意义及不等 式解与方程解的不同之处 能使不等式成立得未知数得值 叫做不等式的解不等式的解 例如 6 是不等式 x 5 一个解 7 8 9 也是不等式 x 5 的解 一个含有未知数的不等式的所有解 组成这个不等式的解集不等式的解集 例如不等式 x 5 1 的 解集为 x 4 不等式 x2 0 的解集是所有非零实数 求不等式解集的过程叫做解不等式解不等式 2 议一议 请你用自己的方式将不等式 x 5 的解集和 x 5 1 的解集分别表示在数轴上 并与同伴交流 引导学生回忆实数与数轴上点的对应关系 认识数轴上的点是有序的 实数是可以比较 大小的 让学生用具体实数对应的点加以说明 3 练习巩固 促进迁移练习巩固 促进迁移 1 判断下列说法是否正确 1 x 2 是不等式 x 3 4 的解 2 x 2 是不等式 3x 7 的解集 3 不等式 3x 7 的解是 x 2 4 x 3 是不等式 3x 9 的解 答案 1 不正确 2 不正确 3 不正确 4 正确 2 在数轴上表示出下列不等式的解集 1 x 1 2 x 1 3 x 1 4 x 1 答案 1 数轴上实心与空心的区别在于 空心点表示解集不包括这一点 实心点表示解集包 括这一点 2 数轴上表示不等式的解集遵循 大于向右走 小于向左走 这一原则 4 回顾联系 形成结构回顾联系 形成结构 想一想 本节课学了哪些知识 在运用时应注意什么 通过问题的回答 引导学生自主总结 把分散的知识系统化 结构化 形成知识网络 完善学生的认知结构 加深对所学知识的理解 5 课外作业与拓展课外作业与拓展 课外作业 课本第 12 页 习题 1 3 2 4 一元一次不等式 1 教学目的和要求教学目的和要求 会用一元一次不等式 并能在数轴上表示其解集 会用一元一次不等式 并能在数轴上表示其解集 教学重点和难点 教学重点和难点 重点 一元一次不等式的解法重点 一元一次不等式的解法 难点 解决一元一次不等式时等号方向的改变 难点 解决一元一次不等式时等号方向的改变 教学过程 教学过程 1 观察下列不等式 1 2 3 x 4 4 240155 22 x75 8 xx35 这些不等式有哪些共同特点 这些等式的左右两边都是整式 只含有一个未知数 并且未知数的最高次数是 1 象这 样的不等式 叫做一元一次不等式 2 先阅读每 1 题的解法 然后仿做第 2 题 最后谈谈自己读题 做题的体会 1 解不等式 并把它的解集表示在数轴上 3 7 2 2xx 解 去分母 得 7 2 2 3xx 去括号 得 xx21463 移项 合并同类项 得 205 x 两边都除以 5 得 4 x 这个不等式的解集在数轴上表示如下 图 1 13 2 解不等式 并把它的解集表示的数轴上 2 2 3 5 xx 答案 3 20 x 其解集在数轴上表示如下图 1 40 3 解不等式 并把它的解集在数轴上表示出来 1 2 3 410 xx 解答 去括号 得 2212410 xx 移项 得 xx4212210 合并同类项 得 24x6 系数化为 1 得 得 x 44 x 在数轴上表示不等式解集如图 4 解不等式 并把它的解集在数轴上表示出来 6 1 2 1 3 1 yyy 解答 去分母 得11 3 1 2 yyy 答案 3 y 这个不等式的解集数轴上表示如图 5 y 取何正整数时 代数式 2 y 1 的值不大于 10 4 y 3 的值 解答 根据题意列出不等式 3 410 1 2 yy 答案 解这个不等式 得 解集中的正整数解是 1 2 3 4 4 y4 y 6 解关于 x 的不等式 k x 3 x 4 解答 去括号 得 kx 3k x 4 答案 若 k 1 0 即 k 1 时 0 1 不成立 不等式无解 若 k 1 0 即 k 1 时 1 34 k k x 若 k 1 0 即 k 1 时 1 34 k k x 7 m 取何值时 关于 x 的方程的解大于 1 2 15 3 16 6 m x mx 解答 解这个方程 15 36 16 2 mxmx 5 13 m x 根据题意 得 1 5 13 m 解得 m 2 8 是否存在整数 m 使关于 x 的不等式与是同解不 22 93 1 mm x m x 1 3 2 x mx 等式 如果存在 求出整数 m 和不等式的解集 如果不存在 请说明理由 答案 x 8 因此 存在符合题意的 m 当 m 11 时 两个不等式同解 解集为 x 8 小结 本节课我们学了什么 作业布置 一元一次不等式 一元一次不等式 2 2 目的 要求 加强巩固一元一次不等式的解法 及用数轴表示不等式的解集 了解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论