




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 思考与练习思考与练习 1 随机误差项包括哪些内容 u 2 一元线性回归模型有哪些基本假定 3 证明公式 2 16 公式 2 17 4 理解样本决定系数的含义 5 若我们搜集两个变量的历史资料如下 广告费x 12345678 销售收入y 1014182025283040 1 绘制散点图 2 与之间是否大致呈线性关系 xy 3 用最小二乘法求出回归方程 4 求回归标准误差 5 给出回归系数的置信度为 95 的区间估计 6 给出回归方程的方差分解表 7 计算与的决定系数 xy 8 对回归方程进行 F 检验 6 美国各航空公司业绩的统计数据公布在 华尔街日报 1999 年年鉴 The Wall Street Journal Almanac 1999 上 航班正点到达的比率和每 10 万名乘客投诉的次数的数据如下 航空公司名称航班正点率 投诉率 次 10 万名乘客 西南 Southwest 航空公司81 80 21 大陆 Continental 航空公司76 60 58 西北 Northwest 航空公司76 60 85 美国 US Airways 航空公司75 70 68 联合 United 航空公司73 80 74 美洲 American 航空公司72 20 93 德尔塔 Delta 航空公司71 20 72 美国西部 Americawest 航空公司70 81 22 环球 TWA 航空公司68 51 25 资料来源 美 David R Anderson 等 商务与经济统计 第 405 页 机械工业出版社 1 求出描述投诉率是如何依赖航班按时到达正点率的的回归方程 并进行显著性检验 2 对估计的回归方程的斜率作出解释 3 如果航班按时到达的正点率为 80 估计每 10 万名乘客投诉的次数是多少 7 下面是对某个案例分析的 EViews 输出结果 该案例的回归分析结果是否理想 为什么 Dependent Variable Y Method Least Squares Date 05 28 03 Time 10 25 Sample 1991 2000 Included observations 10 VariableCoefficientStd Errort StatisticProb C32 2207633 204780 0 3603 X0 1 0 0 5430 R squared0 Mean dependent var48 40000 Adjusted R squared 0 S D dependent var65 10368 S E of regression67 37438 Akaike info criterion11 43526 2 Sum squared resid36314 46 Schwarz criterion11 49578 Log likelihood 55 17632 F statistic0 Durbin Watson stat2 Prob F statistic 0 1 解 一般说来 随机项来自以下几个方面 u 1 变量的省略 由于人们认识的局限不能穷尽所有的影响因素或由于受时间 费用 数据质量等制约而没有引入模 型之中的对被解释变量有一定影响的自变量 y 2 统计误差 数据搜集中由于计量 计算 记录等导致的登记误差 或由样本信息推断总体信息时产生的代表性误 差 3 模型的设定误差 如在模型构造时 非线性关系用线性模型描述了 复杂关系用简单模型描述了 此非线性关系 用彼非线性模型描述了等等 4 偶然性误差 被解释变量还受一些不可控制的众多的 细小的偶然因素的影响 2 解 假定 0 即随机项的条件数学期望 均值 为零 i u i x i u 假定 n 即对于不同的 具有相同 22 iiiii Var u xEuE uE u 2 u i i xu 的方差 也就是说各次观测值所受的随机影响的程度相同 假定 n n 0 ijiijj Cov u uEuE uuE u ijij 即在任意两次观测时 是相互独立的 不相关的 也就是无序列相关 ij u u 假定 即解释变量与误差项同期独立无关 因为如果两者相关 就不可能把对的影 ii Cov u x i x i uxy 响和对的影响区分开来 uy 假定 即对于给定的 为服从正态分布的随机变量 2 0 iu uN i x i u 3 证明 1 因为 i i i i i i i y xx xx x n y xx xx xy n xy 1 1 22 10 所以 2 2 2 2 222 2 2 2 222 2 2 2 2 22 0 1 2 1 2 1 1 1 u i u i i i i u i i i i i i i i i i xx x n xx xx x nxx xx x n xx xx x nxx xx x n yVar xx xx x n y xx xx x n VarVar 3 2 1100110010 EEEECov 1 2 111111 VarxEExExEyxyE 2 2 xx x u 所以 2 2 10 u xx x Cov 4 答 是由回归方程确定的 也就是由自变量变动引起的 又称为回归平方和 是由之外的随机项的ESSxRSSxu 波动引起的 又称不可解释平方和 不难看出 回归平方和 可解释平方和 在总平方和中所占比例越大 残ESSTSS 差平方和在中所占比重就越小 说明回归的效果就越好 即样本回归线与样本观测值RSSTSS 01 i i yx 拟合得越好 为此我们把回归平方和占总平方和的比重定义为样本决定系数 记为 ii x y 2 1 ESSRSS R TSSTSS 显然 越接近于 1 表示回归直线与样本观测值拟合越好 可见可以用来度量回归直线与样本观 2 01R 2 R 2 R 测值拟合优度 另一方面 若大 则解释变量对被解释变量的解释程度就高 可以推测总体线性相关关系显著 2 Rxy 即总体回归系数不会同时为零 回归方程显著 反之 可以推测总体线性相关关系不显著 即与零没有显著差异 1 1 回归方程不显著 5 解 1 利用 EXCEl 绘制 xy 散点图 如下所示 散点图 0 10 20 30 40 50 0246810 广告费 销售收入 系列1 2 通过 xy 的散点图 可以明显的看出与之间大致呈线性关系 xy 3 利用最小二乘法可以求出回归方程如下 xy869 3 714 5 4 回归标准误差922 1 u 5 回归系数的置信度为 95 的区间 3 144 4 595 4 6 回归方程的方差分解表 自由度平方和均方和F 值 Sig F 回归分析 1628 7202628 7202170 27141 25E 05 残差 622 154763 69246 总计 7650 875 7 计算与的决定系数 xy966 0 2 R 8 对回归方程进行 F 检验 因为 Sig f 1 25E 5 1 所以通过 1 的总体显著性检验 F 检验 6 解 1 描述投诉率是如何依赖航班按时到达正点率的的回归方程及显著性检验如下 674 24 779 0 967 4 719 5 070 0 018 6 2 FR t xy 通过进行检验 该回归方程总体线性显著性显著 拟合程度良好 解释变量显著 2 回归方程的斜率即回归系数 0 070 表示航班正点率每提高 1 在其他条件不变的情况下 投诉率将平均的减少 0 070 次 10 万名乘客 3 航班按时到达的正点率为 80 即令回归方程中的 x 80 此时 418 0 y 7 解 不理想 从相关的检验数据来看 拟合优度检验 R2 0 F 0 Sig f 0 t 0 P 0 543 一次项回归系数 显然 各类检验结果均不理想 说明该模型无论从总体而言还是从单个解释变量而言都是不显著的 思考与练习思考与练习 1 写出多元线性回归模型的一般形式 2 多元线性回归模型的基本假定有哪些 3 写出的无偏估计量的计算公式 2 u 4 如果一个样本回归方程的样本决定系数为 0 98 我们能否判定这个样本回归方程就很理想 5 根据例 3 1 数据 利用 OLS 的正规方程组 估计样本回归方程 6 已知我国 1990 年 1999 年的货运量 y 工业总产值 x1 农业总产值 x2资料如下表所示 年份货运量 万吨 工业总产值 亿元 农业总产值 亿元 1990239247662 1 1991266258157 0 1992345999084 7 19934840210995 5 19947017615750 5 19959189420340 9 19969959522353 7 199723788 4 199824541 9 199924519 1 要求计算 5 1 二元线性回归方程 2 对系数 方程分别进行显著性检验 3 当工业总产值达到亿元 农业总产值达到 25000 亿元时 货运量能达到多少 给定置信水平为 95 7 以下是某个案例的方差分解结果 填上所缺数据 ANOVA Model 1Sum of SquaresdfMean SquareFSig Regression42555 4616079 352 Residual 4 785 002 Total71776 951 a Predictors Constant X8 X6 X1 X7 X2 X5 X3 b Dependent Variable Y 8 以下是某个案例的 EViews 分析结果 你对分析结果满意吗 为什么 Dependent Variable Y Method Least Squares Sample adjusted 1991 2000 Included observations 10 after adjusting endpoints VariableCoefficientStd Errort StatisticProb C4 0 0 6193 X10 0 0 0 5838 X20 0 0169 X3 0 1 0044 R squared0 Mean dependent var41 90000 Adjusted R squared0 S D dependent var S E of regression16 11137 Akaike info criterion8 Sum squared resid1557 457 Schwarz criterion8 Log likelihood 39 43051 F statistic11 58741 Durbin Watson stat1 Prob F statistic 0 答案 1 解 如果被解释变量 因变量 y 与 k 个解释变量 自变量 之间有线性相关关系 那么它们之间的 1 x 2 x k x 多元线性总体回归模型可以表示为 01 122kk yxxxu 其中 是 k 1 个未知参数 又称为回归系数 u 是随机误差项 012 k 2 解 多元线性回归模型的基本有 1 随机误差项的条件期望值为零 即 i u 12 0 iiiki E uxxx 1 2 in 2 随机误差项的条件方差相同 即 i u 2 12 iiikiu Var uxxx 1 2 in 6 3 随机误差项之间无序列相关 即 i u 0 ij Cov u u 1 2 i jn ij 4 自变量与随机误差项独立 即 l x i u 0 il Cov u x 1 2 1 2 in lk 5 随机误差项服从正态分布 即 i u 2 0 iu uN 6 各解释变量之间不存在显著的线性相关关系 即 也就是说矩阵 X 的秩等于参数个数 换句 1rank Xkn 话说就是自变量之间不存在多重共线性 3 解 的无偏估计量的计算公式为 2 u 22 22 11 11 nn iii ii ue eyy S nknk 4 解 如果一个样本回归方程的样本决定系数为 0 98 我们不能判定这个样本回归方程就很理想 因为对于多元模型而言 样本决定系数接近 1 只能说明模型的拟合度很高 总体线性性显著 但模型中每个解释变量是否是显著的无法判定 所以还 需要进行单个解释变量的显著性检验 即 t 检验 5 解 根据例 3 1 数据 得到 OLS 的正规方程组 求解得到 210 210 210 37 33090 8 16816 24 62951 11810 8 16816 26 10346 4 31219 7114 24 629 4 312 12 9 219 0 1 2 29 48 0 597 0 665 所以样本回归方程为 12 29 480 4970 665yxx 6 解 1 利用 OLS 对数据进行回归得到回归方程如下 953 57 943 0 021 1 072 0 657 15 223 16206 0 3 879950 2 21 FR t xxyi 2 由上述检验数据可以看出方程总体线性性显著 单单个解释变量并不显著 3 因为方程拟合程度较高 总体线性性显著 所以模型可以用来进行预测 当工业产量达到亿元 农业总产值达到 25000 亿元时 货运量能达到 万吨 131230525000223 16130000206 0 3 879950 i y 7 解 案例的方差分解结果所缺数据如下 ANOVA Model 1Sum of SquaresdfMean SquareFSig Regression42555 46176079 352 Residual29221 490231270 502 4 785 002 Total71776 95130 7 8 解 从该案例的分析数据来看 结果不满意 因为但从模型的拟合优度 R2 0 8528 和总体线性显著性 F 11 5874 F statistic 0 0066 来看 结果还令人满意 但具体到每个解释变量的显著性时 可以看到 x1 t 0 5788 P 0 5838 和 x3 t 1 4236 P 0 1978 甚至都无法通过 15 的显著性检验 所以这两个解释变量显然 不显著 思考与练习 1 什么是异方差性 举例说明经济现象中的异方差性 2 考察以下模型 1 01iii yxu 式中的按下述方式取决于 ux 2 2 2iii uxv 式中是一个独立于且满足全部古典假定的随机变量 对原模型 1 是否可以利用 为什么 i v xOLS 3 在如下回归中 你是否预期存在异方差 y x 样 本 a 公司利润 b 婴儿死亡率 c 通货膨胀率 d 收入水平 e 差错率 净财富 人均收入 货币增长率 年龄 上机时间 财富 前 500 强 100 个发达国家和发展中国家 美国 加拿大和 15 个拉美国家 1000 名经济学家 200 名电脑初学者 4 对某沿海地区家庭每年生活开支和每年收入进行抽样研究 调查了 20 个家庭 其中每五个家庭收入相同 共分作四 组 数据列表如下 组 家庭生 活开支 千元 家庭收入 千元 11 82222 15 233 23 53 53 610 34 24 24 55 8515 44 855 766 220 家庭生活开支模型设定为 01iii yxu 式中 表示家庭生活开支 表示家庭收入 i y i x 利用求回归方程 OLS 做散点图 观察家庭生活开支离差量的变化情况 把数据分作两个子样本 第一子样本包括收入为 5000 元与 10000 元的家庭 即低收入家庭 第二个子样本包括收 入为 15000 元和 20000 元的家庭 即高收入的家庭 进行检验 GoldfeldQuandt 设 其中为一非零常数 变换原模型求回归方程 22 ii Var uk x 2 k 5 什么是自相关性 自相关在线性回归模型中存在的主要原因有哪些 自相关可能造成哪些后果 6 利用以下给定的统计量进行序列相关检验 d 自变量数目 样本容量 kn 1 0 81 3 21 显著性水平 5 dkn 8 2 3 48 2 15 显著性水平 5 dkn 3 1 56 5 30 显著性水平 5 dkn 4 2 64 4 35 显著性水平 5 dkn 5 1 75 1 45 显著性水平 5 dkn 6 0 91 2 28 显著性水平 5 dkn 7 1 03 5 26 显著性水平 5 dkn 7 某子公司的年销售额与其总公司年销售额的观测数据如下表 t y t x 序号 x y 序号 x y 1 2 3 4 5 6 7 8 9 10 127 3 130 0 132 7 129 4 135 0 137 1 141 2 142 8 145 5 145 3 20 96 21 40 21 96 21 52 23 39 22 76 23 48 23 66 24 10 24 01 11 12 13 14 15 16 17 18 19 20 148 3 146 4 150 2 153 1 157 3 160 7 164 2 165 6 168 7 171 7 24 54 24 30 25 00 25 64 26 36 26 98 27 52 27 78 28 24 28 78 用估计关于的回归方程 OLS t y t x 用检验分析随机项的一阶自相关性 DW 用两步法估计回归模型的参数 Durbin 直接用差分法估计回归模型参数 8 什么是多重共线性 多重共线性在多元线性回归模型中普遍存在的主要原因有哪些 多重共线性可能造成哪些不 利后果 9 考虑以下模型 由于和是的函数 所以它们之间存在多重共线 23 0123iiiii yxxxu 2 x 3 xx 性 你同意这种说法吗 为什么 10 将下列模型用适当的方法消除多重共线性 1 消费模型为 012 Cwpu 其中 分别代表消费 工资收入和非工资收入 与可能高度相关 但研究表明Cwpwp 21 1 2 2 需求模型为 0123s Qxppu 其中 分别为需求量 收入水平 该商品价格水平及其替代品价格水平 可能高度相关 Qxp s pp s p 11 下表给出因变量与解释变量的时间序列数据 yx 时间 y 1 x 2 x 3 x 4 x 1 2 6 0 6 0 40 1 40 3 5 5 4 7 108 94 63 72 9 3 4 5 6 7 8 9 10 6 5 7 1 7 2 7 6 8 0 9 0 9 0 9 3 47 5 49 2 52 3 58 0 61 3 62 5 64 7 66 8 5 2 6 8 7 3 8 7 10 2 14 1 17 1 21 3 108 100 99 99 101 97 93 102 86 100 107 111 114 116 119 121 用适当的方法检验多重共线性 用逐步回归分析法确定一个较好的回归模型 12 利用工具变量法估计模型参数的基本思想是什么 13 某经济学家想要估计税收入函数 01 ttt TGDPu 式中 政府税收T 国内生产总值GDP 已知有测量误差 为了把注册的汽车数量作为一个工具变量 研究者决定采用工具变量法 有关数据如下表 GDP 年份19661967196819691970 税收 百万元 y GDP x 十亿元 注册的汽车 z 百万辆 3 4 5 2 1 1 5 7 6 6 8 6 4 5 4 1 试用估计税收函数 OLS 2 用工具变量法估计税收函数 比较这两个估计函数 3 是不是 的一个好的工具变量 zGDP 思考与练习 1 解 古典线性回归模型的一个很重要的假定是随机项的同方差性 即对于每个 的方差都是同一个常数 当此假 i x i u 定不能满足时 则的方差在不同次的观测中不再是一个常数 而是取得不同的数值 即 i u 常数 1 2 2 iii Var ux i n 则称随机项具有异方差性 Heteroscedasticity i u 例如 考虑家庭的可支配收入和储蓄的关系 如建立如下模型 01iii yxu 其中 为第 个家庭的储蓄 为第 个家庭的收入 从二者的关系不难看出 当收入增加时 储蓄平均也会随之增加 i y ii x i 10 如果我们对不同收入水平家庭的储蓄进行观察 同样也会发现 低收入的家庭储蓄差异性较小 而高收入的家庭储蓄的差 异性较大 这是因为低收入的家庭 其收入中扣除必要的生活支出以外 用于其他支出和储蓄的部分也较少 因此随机项 波动的程度小 即方差小 而高收入家庭 其收入中扣除必要的生活支出以外 剩余的就较多 就有更大的使用选择余地 这样储蓄的差异就较大 因而随机项波动的程度就大 即方差大 因此 对于家庭储蓄模型 随机项具有异方差性 i u 2 解 模型 1 无法使用 OLS 进行参数估计 因为随机误差项 即随机误差项与解释变量的平方之间有着 2 2iii uxv 显著地相关关系 这样会造成随机误差项的异方差现象 所以 OLS 不可以使用 3 解 y x 样 本 是否存在异方差 a 公司利润 b 婴儿死亡率 c 通货膨胀率 d 收入水平 e 差错率 净财富 人均收入 货币增长率 年龄 上机时间 财富 前 500 强 100 个发达国家和发展中国家 美国 加拿大和 15 个拉美国家 1000 名经济学家 200 名电脑初学者 存在 不存在 不存在 存在 存在 4 解 对某沿海地区家庭每年生活开支和每年收入进行抽样研究 调查了 20 个家庭 其中每五个家庭收 入相同 共分作四组 数据列表如下 组 家庭生 活开支 千元 家庭收入 千元 11 82222 15 233 23 53 53 610 34 24 24 55 8515 44 855 766 220 家庭生活开支模型设定为 01iii yxu 式中 表示家庭生活开支 表示家庭收入 i y i x 利用求回归方程 OLS ii xy2412 0 89 0 做散点图 观察家庭生活开支离差量的变化情况 散点图 0 1 2 3 4 5 6 7 0510152025 家庭收入 生活开支 系列1 11 由图形可以看出随着收入的增加 家庭生活开支的波动幅度逐渐增大 把数据分作两个子样本 第一子样本包括收入为 5000 元与 10000 元的家庭 即低收入家庭 第二个子样本包括收 入为 15000 元和 20000 元的家庭 即高收入的家庭 进行检验 GoldfeldQuandt 设 其中为一非零常数 变换原模型求回归方程 22 ii Var uk x 2 k 5 解 在古典假设下 线性回归模型中参数的最小二乘估计量具有线性 无偏和有效性 其中 有效性不仅依赖于古典假 设中关于随机项的同方差假定 还依赖与随机项不存在序列自相关假定 即 0 ij Cov u u ij 1 2 i jn 这表明随机项在不同观测点下取值不相关 若这个假定违背 即在不同观测点下的取值相关u 0 ij Cov u u u 联 则称存在序列相关或叫自相关 Autoregression u 自相关产生的原因很多 主要有 1 被解释变量的自相关 许多经济变量往往会有自相关 使用时间序列数据更是如此 其本期值往往受滞后值的影响 2 模型省略了自相关的解释变量 在建立回归模型时 总是要略去某些次要的解释变量 如果略去的解释变量有一些存 在自相关 它必然在随机项中反映出来 从而使随机项具有自相关性 3 随机项本身存在自相关 在许多情况下 随机因素 如干旱 暴风雨 战争 地震等 所产生的影响 常常持续好长 时间 4 回归模型的数学形式不正确 若回归模型所采用的数学形式与所研究问题的真实关系不一致 随机项就可能存在自相 关 5 经济变量的惯性作用 大多数的经济时间序列都有一个明显的特点 就是他们的惯性 由于经济变量的惯性 使得许 多经济变量前后期总是相互关联的 自相关产生的后果 如果模型中的随机项存在自相关 仍然采用普通最小二乘法 会有以下后果 1 最小二乘估计量仍然是线性的和无偏的 但不具有最小方差性 即不是最优的 2 最小二乘估计量的方差估计是有偏的 用来估计随机项的方差和回归参数的方差公式会严重低估真实的方差和标准差 导致 值偏大 使得某些参数显著不为零 即高估了部分参数的显著性 t 3 因变量的预测精度降低 6 利用以下给定的统计量进行序列相关检验 自变量数目 样本容量 dkn 1 0 81 3 21 显著性水平 5 DL 1 03 DU 1 67 因为 0 814 DL 所以存在一阶负自相关 dkn d 3 1 56 5 30 显著性水平 5 DL 1 07 DU 1 83 因为 DL 1 56 DU 所以无法判断 dkn d 4 2 64 4 35 显著性水平 5 DL 1 22 DU 1 73 因为 4 DU 2 64 4 DL 所以无法dkn d 判断 5 1 75 1 45 显著性水平 5 DL 1 48 DU 1 57 因为 DU 1 75 4 DU 所以不存在自dkn d 相关 6 0 91 2 28 显著性水平 5 DL 1 26 DU 1 56 因为 0 91 DL 所以存在一阶正自相关 dkn d 7 1 03 5 26 显著性水平 5 DL 0 98 DU 1 88 因为 DL 1 03 DU 所以无法判断 dkn d 12 7 解 用估计关于的回归方程为 OLS t y t x tt xy173 0 879 0 用检验分析随机项的一阶自相关性 因为 DW 1 662 DL 1 20 DU 1 41 DU DW 4 DU 所以不存DW 在自相关 用两步法估计回归模型的参数 Durbin 直接用差分法估计回归模型参数 8 解 古典线性回归模型的假定之一是 模型中包含的解释变量的观测值矩阵 包括常数项 其秩等于模型中解释变X 量的个数加1 即 此时就称解释变量1 2 之间不存在多重共线性 但如果 1rkk X j x j n 说明观测值矩阵是降秩的 即矩阵的列向量存在某种线性相关关系 也就是解释变量之间存在某 1rk Xk XX 种线性相关 称为存在多重共线性 Multicollinearity 多重共线性存在的原因主要是经济活动经济变量之间复杂的相互联系 另外在计量经济学的研究中 将某些解释变量 的滞后值作为单独的新解释变量包含在模型中 已得到广泛的应用 这样由于解释变量的前后期数值相关使得产生多重共 线性 后果 多元线性回归模型中如果存在完全的多重共线性 Complete Multicollinearity 或Exact Multicollinearity 则参 数的最小二乘估计量是不确定的 其标准差为无穷大 如果存在接近的多重共线性 Near Multicollinearity 则参数 的最小二乘估计量是确定的 而且具有无偏性 但其方差较大 常产生以下结果 1 参数估计值不精确 也不稳定 样本观测值稍有变动 增加或减少解释变量等都会使参数估计值发生较大变化 甚至出现符号错误 从而不能正确反映解释变量对因变量的影响 2 参数估计值的标准差较大 使参数的显著性检验增加了接受零假设的可能 从而舍去对因变量有显著影响的解释 变量 3 难以区分每个解释变量的单独影响 计量经济研究中经常需要利用回归系数定量分析各个解释变量对因变量的单 独影响程度 而在多重共线性的情况下 解释变量的相关性将无法 保持其他变量不变 从而也难以分离出每个解释变 量的单独影响 9 解 它们之间不存在多重共线性 这是因为虽然和是的函数 但它们之间并没有显著地线性相关关系 2 x 3 xx 10 解 1 将代入原模型得 21 1 2 011 1 2 Cwpu 01 1 2 wpu 2 可以考虑将相对价格引入模型 建立如下模型 s p p 012 s p Qxu p 11 解 1 利用 SPSS 对上述数据进行回归得到以下结果 Model Summary b ModelRR Square Adjusted R Square Std Error of the Estimate 1 990 a 980 963 23611 a Predictors Constant x4 x3 x2 x1 13 b Dependent Variable y ANOVA b Model Sum of Squares dfMean SquareFSig 1Regression13 42243 35660 189 000 a Residual 2795 056 Total13 7019 a Predictors Constant x4 x3 x2 x1 b Dependent Variable y Coefficients a Unstandardized Coefficients Standardized Coefficients Collinearity StatisticsModel BStd ErrorBeta tSig ToleranceVIF 1 Constant 3 9141 952 2 005 101 x1 060 048 4801 246 268 02736 448 x2 089 037 4072 397 062 1417 074 x3 013 018 051 693 519 7381 356 x4 007 018 123 420 692 04820 948 a Dependent Variable y 由多重共线性的经典判断法可以看出该模型拟合优度及总体线性显著性都非常好 但单个解释变量显著性却都不理想 所以模型存在多重共线性 此外从解释变量的方差扩大因子 VIF1 36 448 VIF4 20 948 二者均远大于 10 也可以看出 解释变量之间存在多重共线性 2 利用SPSS中逐步回归分析法确定一个较好的回归模型如下 Model Summary c ModelRR Square Adjusted R Square Std Error of the EstimateDurbin W
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 粮食储备的社区粮食安全计划考核试卷
- 酿酒行业节能减排措施考核试卷
- 道路工程测绘技术考核试卷
- 遥感技术在应急管理与救援中的应用考核试卷
- 组织结构优化与流程再造考核试卷
- 常见心脏疾病手术方式
- 新生儿NICU出科报告
- 麻醉专业就业分析研究
- Quadrilineatin-生命科学试剂-MCE
- 9-Heptadecanone-Heptadecan-9-one-生命科学试剂-MCE
- 2025年新高考2卷(新课标Ⅱ卷)英语试卷
- 生产经营单位事故隐患内部报告奖励制度
- 2024年湖北省初中学业水平考试地理试卷含答案
- 2024年认证行业法律法规及认证基础知识 CCAA年度确认 试题与答案
- GB/T 2423.65-2024环境试验第2部分:试验方法试验:盐雾/温度/湿度/太阳辐射综合
- 房产证英文翻译件模板
- 板形与板形控制基础知识
- 过敏性休克ppt课件
- 热血传奇架设及参数设置修改
- 金矿堆浸初步设计
- 打印复印明细清单(报销用)
评论
0/150
提交评论