




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第 l6 章 期权定价 随着资本市场的发展 金融衍生工具越来越被广泛应用于套期保值 投机和套利 尤 其是 l973 年期权定价公式首次在 政治经济杂志 Journal ofPolitical Economy 发表 之后 芝加哥期权交易所的交易商们很快将其程序化输入计算机 应用于刚刚营业的芝加 哥期权交易所 如今该模型以及它的一些变形已被期权交易商 投资银行 金融管理者 保险人等广泛使用 16 1 节股票期权平价公式 介绍股票期权价格的影响因素 并基于无套利原理推导 了股票期权的重要性质 平价公式 16 2 节期权组合交易策略 介绍三种可供投资者选择的期权组合交易策略 并给出 了不同策略相应的交易盈亏图 分析如何运用期权进行套期保值和套利 16 3 节二项式定价模型 基于风险中性理论 给出二项式期权定价模型 二项式期 权定价模型把股票价格在存续期内看成是离散的 分成许多节点 模拟股票所有可能的发 展路径 然后每一路径上每一节点用贴现法计算期权价格 16 4 节布莱克一斯科尔斯公式 布莱克一斯科尔斯期权定价模型把股票价格看做连 续变量 连续时间的随机过程 运用偏微分方程计算出期权价格 自从 2005 年下半年以来 中国证券市场中出现了权证 股票期权 令人瞠目结舌的市 场数据接连出现 宝钢认购权证 看涨期权 上市第一天即涨停 涨幅达 83 58 而在其 交易截止日的前一天又下跌了 85 78 武钢认沽权证 看跌期权 在交易截止日前涨幅最 高接近了 450 各种权证每日的换手率基本上都在 100 以上 并且相关的统计数据显示 在权证交易过程中多数普通投资者大幅亏损 券商 QFII 境外合格机构投资者 基金和 其他机构投资者成为主要赢家 从初衷来看 设立权证主要是为股改服务 为无法以股份 或现金支付对价的上市公司实施股权分置改革提供创新工具 但人们多数 只猜对了开头 却猜不到结局 权证固然促进了股改 但同时也带来了市场的爆炒和空前的投资氛围 权证等衍生工具的出现是市场发展的必然趋势 是对市场收益和风险的再衡量 巨大 的杠杆效应为部分风险承受能力较高的投资者提供交易机会 同时也为风险承受能力较低 的投资者 提供对冲风险和套期保值的手段 16 1 股票期权平价公式 在第 12 章已经就期权的概念 分类以及期权价值给出了较为详细的介绍 这里仅以股 票期权为例讨论影响股票期权价格的因素 以及看涨一看跌平价公式 16 1 1 股票期权价格的影响因素 股票期权 stock option 是指买方在交付了期权费后 即取得在合约规定的到期日或 到期日以前按协议价买入或卖出一定数量相关股票的权利 股票期权价格受到如下 6 个基 本因素的影响 即股票现行价格 S0 执行价格 K 期权期限 股票价格的波动率 无风 险利率 和期权期限内预期发放的股息 dividend payouts 1 股票现行价格 S0 随着股票现行价格 S0上升 看涨期权处于实值状态的可能性越来越大 因此 看涨期 权价格也将随之上升 即股票现行价格 S0与看涨期权价格呈正相关关系 对于看跌期权造 成的影响正好相反 股票现行价格 s0与看跌期权价格呈负相关关系 股票现行价格上升时 看跌期权价格下降 如图 l6 1 所示 2 执行价格 K 如果看涨期权在将来某一时刻行权 期权收益等于股票价格与执行价格的差额 即 ST 一 K0执行价格越高 期权收益越小 看涨期权的价格越小 也就是说 看涨期权价格将随 着执行价格上升而下降 对于看跌期权而言 产生的作用是正好相反的 看跌期权的价格 将随着执行价格的上升而上升 如图 l6 2 所示 3 期权期限 T 一般而言 看涨和看跌期权都会从期权期限的增加中获益 因为在更长的时间周期内 股价将会有更强的波动 但这一结论并非总是成立 随着期权期限的增加 执行价格现值 下降 这将增加看涨期权的价值 减少看跌期权的价值 此外 随着到期时间的增加 有 更多的时间出现股票价格因发放现金股利而下降的情况 这减少了看涨期权的价值 但增 加了看跌期权的价值 如图 16 3 所示 4 股票价格波动率 随着标的资产波动率增加 看涨期权和看跌期权的价格都将增加 因为这表示标的资 产的价格区间将扩大 使得期权可执行程度增高 期权买方将得到有利结果的全部收益 并且可以避免不利结果 期权虚值较小 如图 16 4 所示 5 无风险利率 r 无风险利率不会单方面影响期权价格 当整个经济环境利率增加时 投资者所要求的 股票预期收益也会增加 同时 期权持有者将来所收到现金流的贴现值会有所降低 在以 上两种效应的共同作用下 看涨期权价格会增加 看跌期权价格会降低 见图 l6 5 6 期权期限内预期发放的股息 股息将使股票在除息 13 的价格降低 对于看涨期权 这是一个坏消息 但对于看跌期 权 这却是一个好消息 因此 看涨期权价值与预期股息的大小呈反向关系 看跌期权的 价值与预期股息的大小呈正向关系 归纳起来 这 6 种因素对股票期权价格的影响可用表 l6 1 表示 16 1 2 看涨一看跌平价公式 1 假设及记号 看涨一看跌平价公式的基本假设 a 市场不存在套利机会 b 市场无摩擦 即证券交易不支付交易费用 c 无风险利率 r 是常数 d 贷款和存款利率相等 并且均为无风险利率 e 市场中允许卖空 f 标的股票不支付红利 行文中将采用以下记号 s0 股票的当前价格 c 买入一只股票的美式看涨期权的价格 ST T 时刻股票的价格 p 买入一只股票的美式看跌期权的价格 K 一期权的执行价格 c 买入一只股票的欧式看涨期权的价格 T 期权的期限 P 买入一只股票的欧式看跌期权的价格 r 在 T 时刻到期的无风险投资的收益 V 期权的价值 率 即无风险利率 连续利率 投资组合 2 无套利原理 如果在进行交易的时间段内 投资人在决定投资组合 以后 没有加入新资金 也没 有资金被消耗或抽走 那么称整个交易过程为自融资 或者该投资组合 是自融资 如果 在交易过程中 有资金抽走或消耗出现 那么该市场存在摩擦 如交易要交纳交易费或佣 金 如果在时间 0 T 内存在一个时问点 T 使得当 V0 0 时 有 VT 0 且 Prob VT 0 0 称自融资组合 在 0 T 内存在套利机会 无套利原理 I 如果金融市场在 0 T 期限内 对任意两个投资组合 1 2 如果 VT 1 VT 2 且 Prob VT 1 VT 2 0 那么 对 0 T 中的任意时间 t 都有 VT 1 VT 2 则称无套利 无套利原理 如果金融市场在 0 T 期限内 对任意两个投资组合 1 2 如果 VT 1 VT 2 那么 对 0 T 中的任意时间 t 都有 VT 1 VT 2 则市场是无套利的 3 期权价格的上限与下限 1 期权价格的上限 看涨期权给予其持有者以某指定价格买入标的资产的权利 如果 期权的价格超过本身标的资产的价格 那么将不会有人购买期权 因此期权价格的上限只 能是标的资产的价格 即 c S0与 C S0 如果看涨期权以上的不等式不成立 那么一个套利者可以通过购买股票并同时出售期 权来获取无风险盈利 看跌期权的持有者有权以价格 K 卖出一只股票 无论股票价格下降多少 期权的价格 都不会高于执行价格 即 p K 与 P K 在 T 时刻 欧式期权的价格不会超过 K 因此 当前期权的价格不会超过 K 的贴现值 即 P Ke rT 如果看跌期权以上不等式不成立 那么一个套利者可以卖出一个期权 同时将卖出期 权所得费用以无风险利率进行投资 将获得无风险收益 2 无股息股票的看涨期权的下限 考虑以下两个交易组合 组合 A 一个欧式看涨期权加上数量为 Ke rT的现金 组合 8 一只股票 在组合 A 中 如果将现金按无风险利率进行投资 在 T 时刻将变为 K 在时间 T 如果 ST K 投资者行使看涨期权 组合 A 价值为 ST 如果 ST K 期权到期时价值为 0 这时 组合 A 的价值为 K 因此在 T 时刻 组合 A 的价值为 max ST K 组合 B 在 T 时刻的价格为 sT 因此在 T 时刻组合 A 的价值不会低于组合 B 的价值 因 此 在无套利的条件下 有 c Ke rT S0 对于一个看涨期权而言 最差的情况是期权到期时价值为 0 因此 期权价值不能为 负值 即 C 0 因此 C max S0 Ke rT 0 3 无股息股票的欧式看跌期权下限 考虑以下两个交易组合 组合 c 一个欧式看跌期权加上一只股票 组合 D 金额为 Ke rT的现金 如果 SrK 在到期时 期权价值为 0 组合 C 的价值为 ST 因此在 T 时刻组合 C 的价值为 max ST K 将现金以无风险利率投资 在 T 时刻组合 D 的价值为 K 因此在 T 时刻组合 C 的价值 总是不低于组合 D 的价值 在无套利条件下 组合 C 的价值不会低于组合 D 在今天的价值 即 P S0 Ke rT 对于一个看跌期权而言 最差的情况是期权到期时价值为 0 期权价值不能为负值 因此 P max Ke rT S0 0 4 看涨一看跌平价公式 考虑以下两个组合 组合 A 一个欧式看涨期权加上数量为 Ke rT的现金 组合 C 一 个欧式看跌期权加上一只股票 这两个组合期权在到期时价值均为 max ST K 由于组合 A 和 C 中的期权均为欧式期权 在到期日之前不能提前执行 因此它们在当 前必须有相同的价值 这意味着 c Ke rT P S0 16 1 这一关系式就是看涨一看跌平价公式 put call parity 此公式表明具有欧式 看涨期权的价值可由一个具有相同执行价格和到期日的看跌期权价值推导出来 这一结论 反之亦然 5 看涨 看跌平价公式扩展 虽然看涨一看跌平价公式只对欧式期权成立 但也可以从中类推美式期权服从的关系 式 当没有股息时 S0 K C P S0 Ke rT 16 2 看涨一看跌平价公式 c Ke rT p S0 只有在无股利发放 到期执行的前提下才 成立 现在放松这两条假设 可以有以下结论 无股息的美式看涨期权不会被提前行使 因为 拥有期权而不是股票时 持有者拥有 价格保险 也就是说 拥有期权能保证持有者最低损失仅为期权费 一旦期权被行使后 执行价格同股票互换 保险会因此消失 再者 对期权持有者而言 支付执行价格越迟越 好 这与货币的时间价值有关 在期权期限内任意给定的时刻 如果期权的实值程度足够大 那么就应该提前行使期 权 与看涨期权类似 一个看跌期权也可以看做是一种保险 当同时持有股票和看跌期权 时 看跌期权可以为期权持有者在股票价格下跌到一定水平时提供保险 但与看涨期权不 同的是 放弃这一保险 而提前行使期权从而立即实现执行价格可能为最优的策略 因此 无股息的美式看跌期权可能会被提前行使 接下来 放松没有红利支付的假设 考虑一下股息对期权价格的影响 在美国 交易 所交易的大部分期权期限小于 l 年 因此可以比较准确地预测在期权期限内股息的支付时 间及数量 用 D 来表示期权期限内股息的贴现值 在计算 D 时 假定股息在除息日付出 当存在股息时 公式 16 1 所表达的看跌一看涨平价公式变为 c D Ke rT P S0 16 3 股息会使公式 16 2 变为 S0 D K C P S0 Ke rT 16 4 例如 一个美式看涨期权的执行价格为 20 美元 期限为 5 个月 期权价格为 l 5 美元 假定 当前股票价格为 19 美元 无风险利率为年率 10 由公式 16 2 得出 19 20 C P 19 20e 0 1x5 12 即 1 P C 0 18 上式显示 P C 介于 0 18 1 美元之间 由于 C 为 1 5 美元 P 必须介于 l 68 2 50 美元 也就是说 与美式看涨期权具有相同执行价格及期限的美式看跌期权价格的上下限 分别为 2 50 美元及 1 68 美元 16 2 期权组合交易策略 在第 12 章中 讨论了由单个期权所带来的盈利形式 本节将以股票期权为例 讨论期 权组合的交易策略 对于其他标的资产 如股指期货 期货等 可以得到类似的结果 为 了简化 讨论中所采用的期权为欧式期权 并在所列举的交易策略收益图表中都忽略货币 的时间价值 图中所表示的盈利为最终收益减去初始费用 理论上讲 盈利应等于最终受益 的贴现值减去初始费用 16 2 1 单一期权和股票的策略 包括单一期权和股票的策略有多种形式 这些策略的盈亏状况如图 16 6 所示 在图 16 6 中 虚线代表组合中单个证券的盈利与股票价格的关系 实线代表整个组合的盈利和 股票价格之间的关系 图 16 6a 中 交易组合是由一个股票多头与一个看涨期权空头组成 这种交易策略被 称为 出售受保护的看涨期权 writing covered call 这里的股票多头可以保护投资 者 使其免遭股票价格急剧上涨带来的损失 图 l6 6b 中 交易组合是由一个股票空头加 上一个看涨期权多头组合而成 其盈利状态与出售受保护的看涨期权的盈利状态相反 图 16 6c 中 交易组合包括一个看跌期权多头及股票多头 这一交易策略被称为 购买受保 护的看跌期权 protective put 图 16 6d 中 交易组合是由一个看跌期权空头和一个 股票空头组成 这一交易策略的盈利状态与受保护的看跌期权的盈利状态相反 图 16 6 中的盈亏状态与第 l2 章中讨论的看跌期权空头 看跌期权多头 看涨期权多 头及看涨期权空头的盈利状态相似 由看涨一看跌平价公式 以理解为何如此 由公式 16 1 可知 c P S0 Ke rT 16 5 公式 16 5 表明 一个看涨期权多头的盈利状况与用 Ke rT的现金购买看跌期权和股票 的盈利状况是一样的 所以图 l6 6c 的盈利状况图与看涨期权多头的盈亏图相似 对公式 16 1 进行变换 P S0 c Ke rT表示用 Ke rT购买一只股票并卖出一个看涨期权 的盈利状况与出售看跌期权的盈利状况相类似 这就是为什么图 16 6a 与看跌期权空头盈 亏图类似的原因 也就是说 任何基本的期权交易策略都可以通过单一股票期权和股票的 组合进行替代 16 2 2 价差期权交易策略 1 牛市价差期权 价差期权交易策略是持有相同类型的两个或多个期权头寸 通过不同的执行价格买进 卖出 从而进行套利的策略 价差期权在不同的证券市场状态下 会有不同的策略 由此 分为牛市价差期权 熊市价差期权 盒式价差期权 蝶式价差期权 日历价差期权和对角 价差期权等 下面就主要的价差期权一一展开说明 牛市价差期权 bull spread 既可以利用看涨期权组合构成 也可以通过看跌期权组合 构成 如图 l6 7 所示 此牛市价差期权是 买入一个具有某一确定执行价格 K1 的股票看涨 期权的同时 卖出一个标的相同但具有较高执行价格 K2 的股票看涨期权 两个看涨期权 的期限相同 从图 l6 7 中可以看到 牛市价差期权在不同情况下可以实现的总收益 如果 股票价格表现良好 即价格上涨高于 K2时 此时收益为两个执行价格的差 K2 K1 如果在 到期日股票价格介于 K1与 K2之间 牛市价差的收益为 ST K1 如果在到期日 股票价格低 于 K1 牛市价差的收益为 0 归纳如表 16 2 所示 牛市价差限制了投资者收益的同时也控制了损失的风险 这一策略可以表达为 投资 者拥有一个执行价格为 K1的期权 同时卖出执行价格为 K2 K2 K1 的期权而放弃了股票上升 的潜在收益 作为对放弃潜在收益的补偿 投资者获得了执行价格为 K2的期权费用 牛市价差期权还可以通过看跌期权组合构成 其构成原理与看涨期权构成的牛市价差 类似 即买入具有较低执行价格看跌期权的同时 卖出具有较高执行价格的看跌期权 如 图 16 8 所示 与采用看涨期权构造牛市价差不同的是 用看跌期权构造的牛市价差会给 投资者在最初带来一个正的现金流 忽略保证金的要求 2 熊市价差期权 与牛市价差期权相似 熊市价差期权 bear spread 可以由看涨期权组合构成也可以通 过看跌期权组合构成 但熊市价差期权投资者希望股票价格下跌 因为只有股票价格下跌 时 才有利可获 首先 看看利用看跌期权构造的熊市价差期权 由看跌期权构成的熊市价差期权是 在买入某一具有较高执行价格 K2 的看跌期权的 同时 卖出具有较低执行价格 K1 的看跌期权 两个看跌期权的标的资产和期限相同 图 l6 9 中 盈利由实线表示 从图 l6 9 中可以看出 当股票价格低于 K1时 此时价差收益 为两个执行价格的差 K2 K1 如果在到期日股票价格介于 K1与 K2之间 熊市价差期权的 收益为 K2 ST 如果在到期日 股票价格高于 K2 熊市价差的收益为 0 归纳如表 16 3 所 示 与牛市价差类似 熊市价差限定了盈利的上限 同时也控制了损失 由看跌期权构造 的熊市价差期权在最初会有一个正的现金流出 这是因为支付的期权费小于收到期权费 卖 出期权的执行价格小于买入期权的执行价格 熊市价差不仅能用看跌期权组合而成 也可 以用看涨期权组合而成 交易策略如图 l6 10 所示 投资者可以通过买入具有较高执行价 格的看涨期权 卖出具有较低执行价格的看涨期权的策略构造熊市价差期权 3 盒式期权 盒式期权 box spread 是牛市价差和熊市价差的组合 两个价差都是由执行价格为 K1 和 K2的看涨期权构成 如表 l6 4 所示 一个盒式价差的收益为 K2 K1 因此盒式价差的 贴现值为 K2 K1 e rT 如果其贴现值与这一数值有所不同 就会产生套利机会 如果盒式 价差的市场价格过低 套利者可以通过买入盒式来盈利 这时套利策略为 买人一个具有 执行价格 K1的看涨期权 买人一个执行价格为 K2的看跌期权 卖出一个执行价格为 K2的 看涨期权及卖出一个执行价格为 K1的看跌期权 如果盒式价差的市场价格过高 套利者可 以利用卖出盒式价差来盈烈 套利策略为买人执行价格为 K2的看涨期权 买入一个执行价 格为 K1的看跌期权 卖出一个执行价格为 K 的看涨期权并卖出一个执行价格为 K2的看跌期 权 4 蝶式期权 蝶式期权 butterfly spread 策略由 3 种具有不同执行价格的期权构成 其构造方式 为 买人一个具有较低执行价格 K1的看涨期权 买入一个具有较高执行价格 K3的看跌期权 以及卖出两个具有执行价格为 K2的看涨期权 其中 K2为 K1与 K3中间的某个值 一般来讲 K2接近于当前股票价格 这一交易策略的盈利如图 l6 11 所示 如果股票价格保持在 K2附近 蝶式价差会产生盈利 但如果股票价格远远偏离 K2 蝶 式价差会有小量的损失 因此蝶式价差对于那些认为股票价格不会有较大波动的投资者而 言会非常合理 该策略需要少量的初始投资 表 l6 5 给出了蝶式价差的收益 蝶式期权也可以由看跌期权构成 投资者可以买人一个具有较低执行价格及一个具有 较高执行价格的两个看跌期权 同时卖出两个具有中问执行价格的两个看跌期权 如图 16 12 所示 16 2 3 组合期权交易策略 组合期权是针对同一标的看涨期权与看跌期权的交易策略 下面将要考虑的组合期权 包括条式期权 strip 和带式期权 strap 宽跨式期权 straddle 1 条式期权和带式期权 条式期权是具有相同执行价格和相同期限的一个看涨期权和两个看跌期权的组合 带 式期权是由具有相同执行价格和相同期限的两个看涨期权和一个看跌期权的组合 图 l6 13 显示了条式期权和带式期权的盈利形式 条式期权中投资者认为 股票价格会有较大的 变动 同时价格下降的可能性要大于价格上升的可能性 而在带式组合中 投资者也认为 股票价格有较大的变动 但价格上升的可能性大于价格下降的可能性 2 宽跨式期权 宽跨式期权是投资者买入具有相同期限但具有不同执行价格的看跌及看涨期权 图 l6 14 显示了其盈利状况 宽跨式期权所取得的盈利与执行价格之间的距离有关 距离越远 潜在损失越小 但 为了获取盈利 价格也需要有一定的浮动 16 3 二项式定价模型 1973 年 布莱克和斯科尔斯 Black and Scholes 提出了 Black Scholes 期权定价模 型 对标的资产的价格服从正态分布的期权进行定价 随后 罗斯开始研究标的资产的价 格服从非正态分布的期权定价理论 1976 年 罗斯和约翰 考科斯 John Carrington Cox 在 金融经济学 杂志上发表论文 基于另类随机过程的期权定价 提出了风险中性定价理 论 1979 年 罗斯 考科斯和马克 鲁宾斯坦 Mark Rubinstein 在 金融经济学 杂志 上发表论文 期权定价 一种简单的方法 该文提出了一种简单的对离散时间的期权定价 的方法 被称为 Cox Ross Rubinstein 二项式期权定价模型 二项式期权定价模型和布莱克一斯科尔斯期权定价模型 是两种相互补充的方法 二 项式期权定价模型推导比较简单 更适合说明期权定价的基本概念 二项式期权定价模型 建立在一个基本假设基础上 即在给定的时间间隔内 证券的价格运动有两个可能的方向 上涨或者下跌 虽然这一假设非常简单 但由于可以把一个给定的时间段细分为更小的时 间单位 因而二项式期权定价模型适用于处理更为复杂的期权 16 3 1 风险中性定价 风险中性定价 risk neutral pricing theory 又称风险中性理论 是指在市场不存在 任何套利可能性的条件下 如果衍生证券的价格仍然依赖于可交易的基础证券 那么这个 衍生证券的价格与投资者的风险态度无关 这个结论在数学上表现为衍生证券定价的微分 方程中并不包含有受投资者风险态度的变量 尤其是期望收益率 风险中性价原理是约翰 考科斯和斯蒂芬 罗斯 Stephen A Ross 于 1976 年推导期 权定价公式时建立的 由于这种定价原理与投资者的风险制度无关 从而推广到对任何衍 生证券都适用 所以在以后的衍生证券的定价推导中 都接受了这样的前提条件 就是所 有投资者都是风险中性的 或者是在一个风险中性的经济环境中决定价格 并且这个价格 的决定 又是适用于任何一种风险态度的投资者 关于这个原理 有着一些不同的解释 从而更清晰了衍生证券定价的分析过程 首先 在风险中性的经济环境中 投资者并不要求任何的风险补偿或风险报酬 所以基础证券与 衍生证券的期望收益率都恰好等于无风险利率 其次 正由于不存在任何的风险补偿或风 险报酬 市场的贴现率也恰好等于无风险利率 所以基础证券或衍生证券的任何盈亏经无 风险利率的贴现就是它们的现值 最后 利用无风险利率贴现的风险中性定价过程是鞅 martingale 或者现值的风险中性定价方法是鞅定价方法 martingale Pricing Technique 由于这种定价原理与投资者的风险偏好无关 从而对任何衍生证券都适用 所以一般 的衍生证券定价推导中 都接受了这样的前提条件 风险中性的投资者不以自己的偏好进 行资产选择 仅以风险和收益作为最优标准 风险中性方法打开了利用二叉树对期货资产 价值建模的期权定价技术之门 16 3 2 二项式期权模型 二项式期权模型 binomial model 也称为二叉树模型 binomial tree 或 CRR 模型 二 叉树是模拟股票价格在期权期限内变动路径的图形 通常认为股票价格服从随机游走 这 源于有效市场理论 无限期的二叉树模型将趋向随机游走 因此成为能够反映股票价格变 动的有效模型 二叉树模型仅假设股票价格向上和向下两个方向的变动 事实上也存在股 票价格多方向变动 如三 下面从一个简单的例子人手 假设一个股票的当前价格为 l0 元 并且已知在 3 个月后 股票的价格将会变为 l2 元或 8 元 希望找出 3 个月后能够以 ll 元买人股票的期权价格 这个期权在 3 个月后将具有以下两个价格中的一个 如果股票价格变为 12 元 期权价格为 1 元 如果股票价格为 8 元 期权价格为 0 如图 16 15 所示 这里可以采用一种比较简单的方式来对此例中的期权进行定价 定价过程中唯一需要 的假设是市场不存在套利机会 构造一个股票和期权的组合 并使得这一组合在 3 个月后 具有确定的收益 由于该组合具有确定收益率 因此没有任何风险 按照风险中性定价原 理 这一利率一定等于无风险利率 这样得出构造这一交易组合的成本 并获得期权的价 格 因为这里有两种证券 股票与股票期权 并且股票价格仅有向上和向下两个可能性 因此总是可以构造出无风险证券组合 考虑一个有 只股票的多头头寸和一份看涨期权空头头寸构成的交易组合 下面将求 出交易组合具有无风险收益的 当股票价格由 l0 元变为 12 元时 所持股票的价
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年通信工程师考试移动通信网络优化方案试题
- 2025年事业单位招聘考试教师英语学科专业知识试卷(英语教学论文发表)试题
- 2025年网络编辑师考试网络编辑专业网络游戏平台运营试卷
- 2025年网络工程师考试网络设备调试与维护试题集
- 2025年事业单位招聘考试综合类专业能力测试试卷(艺术设计类)高分技巧解析
- 2025年事业单位招聘考试综合类无领导小组讨论面试真题模拟试卷:情景模拟篇
- 2025年托福考试阅读真题模拟模拟试卷:阅读速度提升训练
- 2025年事业单位招聘考试人力资源类综合专业能力测试试卷案例
- 2025年物业管理师考试物业管理企业文化建设报告试题
- 2025年西式面点师(中级)西点产品定位考试试卷
- 2025年基于初中课堂提升学生数学阅读能力的有效策略研究
- 初中历史教师业务考试试题及答案
- 学校教师会议管理制度
- 传染病与职业防护
- 国企入股私企协议书
- 《地质灾害概述》课件
- 移民培训合同协议
- 2025年上交所期权交易资质测试题库
- 医院科室奖励性绩效分配方案
- 2025标准劳动合同范本专业版(合同样本)
- 浙江粉煤灰钢板仓施工方案
评论
0/150
提交评论