




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
用心 爱心 专心 1 抛物线及其标准方程同步试题抛物线及其标准方程同步试题 一 选择题 1 若 是定直线 外的一定点 则过 与 相切圆的圆心轨迹是 A 圆 B 椭圆 C 双曲线一支 D 抛物线 2 抛物线 的焦点到准线的距离是 A 2 5 B 5 C 7 5 D 10 3 已知原点为顶点 轴为对称轴的抛物线的焦点在直线 上 则此 抛物线的方程是 A B C D 4 抛物线 的焦点坐标是 A B C D 5 抛物线 的焦点坐标为 A B C D 时为 时为 6 抛物线 的准线方程是 A B C D 7 若点 到点 的距离比它到直线 的距离小 1 则 点的轨迹方程 是 A B C D 8 抛物线 的焦点位于 用心 爱心 专心 2 A 轴的负半轴上 B 轴的正半轴上 C 轴的负半轴上 D 轴的正半轴上 9 抛物线 的焦点坐标是 A B C D 10 与椭圆 有相同的焦点 且顶点在原点的抛物线方程是 A B C D 11 过 0 1 作直线 使它与抛物线 仅有一个公共点 这样的直线有 条 A 1 B 2 C 3 D 4 12 设抛物线 与直线 有两个公共点 其横 坐标分别是 而 是直线与 轴交点的横坐标 则 关系是 A B C D 13 已知点 是抛物线 的焦点 点 在抛物线上移动时 取得最小值时 点的坐标为 A 0 0 B C D 2 2 14 设 是抛物线 上的不同两点 则 是弦 过焦点的 A 充分不必要条件 B 必要不充分条件 C 充要条件 D 不充分不必要条件 用心 爱心 专心 3 二 填空题 1 过点 2 3 的抛物线的标准方程为 2 点 M 与 的距离比它到直线 的距离小 1 则点 的轨迹方程为 3 已知椭圆以抛物线 的顶点为中心 以此抛物线的焦点为右焦点 又椭圆的 短轴长为 2 则此椭圆方程为 4 在抛物线 上有一点 它到焦点的距离是 20 则 点的坐标是 5 已知抛物线 上一点 到焦点 的距离等于 则 6 抛物线 的焦点弦的端点为 且 则 7 若正三角形的一个顶点在原点 另两个顶点在抛物线 上 则 这个三角形的面积为 8 抛物线 上的一点 到 轴的距离为 12 则 与焦点 间的距离 9 若以曲线 的中心为顶点 左准线为准线的抛物线与已知曲线右准线交 于 两点 若 点的纵坐标为 则 点的纵坐标为 10 过抛物线 的对称轴上一点 作一条直线与抛物线交于 两 点 若 点的纵坐标为 则 点的纵坐标为 11 在抛物线 内 通过点 2 1 且在此点被平分的弦所在直线的方程是 12 已知点 2 3 与抛物线 的焦点的距离是 5 则 13 焦点在直线 的抛物线的标准方程是 三 解答题 用心 爱心 专心 4 1 已知抛物线的顶点在原点 对称轴是 轴 抛物线上的点 到焦点的距离 等于 5 求抛物线的方程和 的值 2 已知点 和抛物线 上的动点 点 分线段 为 求点 的轨迹方程 3 求顶点在原点 以 轴为对称轴 其上各点与直线 的最短距离为 1 的抛物线方程 4 抛物线的顶点在原点 焦点在 轴上 为抛物线上两点 且 方程为 求抛物线方程 5 若直线 交抛物线 于 两点 且 中点的横坐标是 2 求 6 过抛物线 的焦点引一直线 已知直线被抛物线截得的弦被焦点分成 2 1 求这条直线的方程 7 某抛物线形拱桥跨度是 20 米 拱度是 4 米 在建桥时 每 4 米需用一根支柱支撑 求其中最长支柱长 8 已知抛物线 过焦点 的直线 交抛物线交于 两点 直线 的倾斜角为 求证 9 是否存在同时满足下列两个条件的直线 与抛物线 有两个不同的交点 线段 被直线 垂直平分 若不存在 说明理由 若存在 求出 的方程 10 如果抛物线 和圆 相交 它们在 轴上方的交点为 那么当 为何值时 线段 中点 在直线 参考答案 一 1 D 2 B 3 D 4 B 5 C 6 D 7 C 8 C 9 B 10 B 11 C 12 C 13 D 14 C 二 1 或 2 3 4 18 12 或 18 12 5 6 4 用心 爱心 专心 5 7 8 13 9 10 11 12 4 13 或 三 1 据题意可知 抛物线方程应设为 则焦点是 点 在抛物线上 且 故 解得 或 抛物线方程 2 设 即 而点 在抛物线 上 即所求点 的轨迹方程为 3 依题设可设抛物线方程为 此抛物线上各点与直线 的最短距离为 1 此抛物线在直线 下方而且距离为 1 的直线 相切 由 有 所求抛物线方程为 4 设方程为 用心 爱心 专心 6 方程为 方程为 由 由 又 又 所求方程为 由对称性可知开口向左的方程为 5 6 由 得焦点 设所求弦两端点为 直线 又 过焦点 且 故 由 解得 或 把 代入 式得 故所求的直线方程为 7 3 84 米 8 分 两种情况证明 用心 爱心 专心 7 9 若存在直线 则 垂直平分 所以 设 的方程为 代
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电力市场波动对水电企业投资决策的影响
- 幼儿教师实践教学能力与理论知识的有机融合
- 药学导论考试试题及答案
- 西安市高陵区融媒体中心公益性岗位招聘考试真题2024
- 2024年宝鸡石油机械有限责任公司招聘考试真题
- 数据隐私与安全问题在人工智能审计中的挑战
- 工程项目管理实践课程的虚拟仿真与模拟训练
- 大数据背景下企业预算风险识别与管理
- 2025年数理逻辑考试题目及答案
- 2025年市场营销期末考试试题及答案
- 生物医学面试题及答案
- 《人工智能技术基础》课件-第四章 机器学习
- 精神科护理安全警示教育
- 安全风险辨识管控管理制度
- 人教版小学三年级上册同步作文电子版
- 微软公司员工管理手册
- 构建高效社区养老家政服务体系
- 酒店业HSE管理体系及客户安全措施
- TCSEB 0013-2020《水下爆破工程技术设计规范》
- 《氨基酸与还原糖对美拉德反应制备浓香菜籽油影响的研究》
- 阜外体外循环手册
评论
0/150
提交评论