高2014届高三数学阶段性考试(文科)_第1页
高2014届高三数学阶段性考试(文科)_第2页
高2014届高三数学阶段性考试(文科)_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

成都七中高成都七中高 20142014 届高三数学阶段性考试届高三数学阶段性考试 文科文科 考试时间 2013 年 10 月 4 日 15 00 17 00 命题人 陈中根命题人 陈中根 第第 卷卷 选择题选择题 共共 50 分分 一 选择题 本大题共 10 小题 每小题 5 分 共 50 分 在每小题给出的四个选项中 只有一项是符合题目要求的 1 已知集合 则 12 xxM 2 1 0 1 2 3 N NM A B C D 1 0 1 2 0 1 1 0 1 1 0 2 若命题 或 是真命题 且 是假命题 则 pqpq A 命题和命题都是假命题 B 命题和命题都是真命题pqpq C 命题和命题 的真值不同 D 命题和命题的真值不同pq pq 3 设函数 f x 是连续可导函数 并且 2 2 lim 0 00 0 xf x xfxxf x 则 A B C D 2 1 2 42 4 对于函数 yf x xR yf x 的图象关于 y 轴对称 是 y f x是奇函数 的 A 充分而不必要条件 B 必要而不充分条件 C 充要条件 D 既不充分也不必要 5 命题 若 则有实数根 与其逆命题 否命题 逆否命题这四个0 m0 2 mxx 命题中 假命题的个数是 A 0 B 1 C 2 D 3 6 定义在实数集 R 上的函数 f x 对一切实数 x 都有 xfxf 21成立 若 f x 0 仅有 101 个不同的实数根 那么所有实数根的和为 A 101 B 151 C 303 D 2 303 7 已知函数满足对任意 0 4 3 0 xaxa xa xf x 成立 则 a 的取值范围是 0 21 21 21 xx xfxf xx都有 A B C D 4 1 0 1 0 1 4 1 3 0 8 方程的实根在以下那个选项所在的区间范围内 1log 1 1 2 x x x 0 x A B C D 2 1 8 5 8 3 2 1 4 1 8 3 8 1 4 1 9 设 若仅有一个常数使得对于任意的 都有满足方程1 ac 2 aax 2 aay 这时的取值为 cyx aa loglogca A B C D 3456 10 定义表示不超过的最大整数 记 其中对于时 函数 xx xxx 3160 x 和函数的零点个数分别为则 1 sin sin 22 xxxf 1 3 x xxxg nm A B 313 101 nm314 101 nm C D 313 100 nm314 100 nm 第第 卷卷 非选择题非选择题 共共 100 分分 二 填空题二 填空题 本大题共 5 小题 每小题 5 分 共 25 分 把答案填在后面的答题卷的相应地 方 11 设集合 则 用集合表 1 0 2 Mx x 210Nxx MN I 示 12 命题 的否定为 012 2 xxRx 13 函数单调递减区间为 12 log 2 2 1 xxxf 14 已知函数时 时 则函数的零0 x x xf2 0 x 1 3 ylog x 1 xffy 点个数有 个 15 下列命题是真命题的序号为 定义域为 R 的函数 对都有 则为偶函数 xfx 1 1 xfxf 1 xf 定义在 R 上的函数 若对 都有 则函数 xfy Rx 2 1 5 xfxf 的图像关于中心对称 xfy 2 4 函数的定义域为 R 若与都是奇函数 则是奇函数 xf 1 xf 1 xf 1949 xf 函数的图形一定是对称中心在图像上的中心对称图形 0 23 adcxbxaxxf

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论