CN101803911A自组织脉搏传感器中的滤波融合方法.doc_第1页
CN101803911A自组织脉搏传感器中的滤波融合方法.doc_第2页
CN101803911A自组织脉搏传感器中的滤波融合方法.doc_第3页
CN101803911A自组织脉搏传感器中的滤波融合方法.doc_第4页
CN101803911A自组织脉搏传感器中的滤波融合方法.doc_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

CN101803911A自组织脉搏传感器中的滤波融合方法 (10)申请公布号101803911A (43)申请公布日xx.08*101803911A* (21)申请号xx10139528.9 (22)申请日xx.04.02A61B5/02(xx.01) (71)申请人浙江大学地址310027浙江省杭州市西湖区浙大路38号 (72)发明人孟濬王磊黄德样黄小静陈啸 (74)专利代理机构杭州求是专利事务所有限公司33200代理人周烽 (54)发明名称自组织脉搏传感器中的滤波融合方法 (57)摘要本发明公开了一种应用于自组织脉搏传感器中的滤波融合方法。 此方法通过在手腕内侧桡动脉处放置多个压电式传感器点阵(每个单点传感器可单独测得脉搏波)获得多路脉搏波曲线。 曲线在信息融合中心进行数字滤波和因子分析首先,数字滤波采用小波处理方法,能有效消除脉搏波中混入的如基线漂移、肌电干扰、工频干扰等噪声信号;然后,因子分析对滤波后的多路脉搏信号做降维处理,去除其中严重失真的信号通道,同时优化选择两路脉搏波信号,最终融合为一路脉搏波输出。 采用本发明的方法可以实时调整传感器点阵的输出权重,从而得到最接近真实脉搏信号的一路脉搏信号,然后通过无线通信模块与后续处理模块接合,最终实现实时的脉搏信号监测与分析。 (51)Int.Cl. (19)中华人民共和国国家知识产权局 (12)发明专利申请权利要求书1页说明书5页附图4页101803911A1/1页21.一种自组织脉搏传感器中的滤波融合方法,其特征在于,包括以下步骤 (1)用小波分析的方法进行数字滤波。 (2)经过滤噪处理之后的9路脉搏信号的融合处理。 2.根据权利要求1所述自组织脉搏传感器中的滤波融合方法,其特征在于,所述步骤 (1)具体如下(A)选择小波基选择sym8作为小波基波。 (B)选择尺度在尺度9上进行小波分解。 (C)阈值去噪采用软、硬阈值折衷的算法进行阈值去噪。 (D)重构脉搏波。 3.根据权利要求1所述自组织脉搏传感器中的滤波融合方法,其特征在于,所述步骤 (2)具体如下(a)因子分析可将原始9个脉搏通道数据序列划分为3个脉搏波数据组,每个数据组由在某个因子上的载荷较大,而在其它2个因子上的载荷均较小的几个时间序列所组成。 采用如下简便的方法进行空间降维在由3个因子决定的3个变量组中,分别取且仅取一个典型变量,组成降维之后的变量集合。 (b)选取主因子脉搏波通道选择第1因子和第2因子上载荷最大的脉搏波通道为两路主因子脉搏波通道。 (c)输出融合脉搏波对两路脉搏波信号做加权融合,最终输出理想脉搏波信号。 权利要求书101803911A1/5页3自组织脉搏传感器中的滤波融合方法技术领域0001本发明涉及信号处理技术领域,尤其涉及一种脉搏波智能检测装置中的滤波融合方法。 背景技术0002现有的脉搏波检测装置在测量病人脉搏时要求被测者处于平静状态,得出脉搏波用于医学上的辅助诊断。 但是,在动态测量脉搏波的情况下,现有的脉搏波检测装置往往精度不能满足要求,且医学参考价值不大。 在需要对被检者进行全天候监测的情况下,静态的脉搏波检测装置不能取得很好的效果。 0003已有的多路脉搏检测装置,在脉搏波后续的处理过程中没有按照中医中的切脉理论去考虑合适的融合处理方法,比如寸关尺三部脉波形各异,还有不同的运动负荷对脉搏造成的干扰如何消除。 导致测量出来的脉搏波缺乏鲁棒性。 发明内容0004本发明的目的在于针对现有技术的不足,提供一种应用于自组织脉搏传感器中的脉搏波的滤波融合方法。 0005一种自组织脉搏传感器中的滤波融合方法,包括以下步骤0006 (1)用小波分析的方法进行数字滤波;0007 (2)经过滤噪处理之后的9路脉搏信号的融合处理。 0008进一步地,所述步骤 (1)具体如下0009(A)选择小波基选择sym8作为小波基波;0010(B)选择尺度在尺度9上进行小波分解;0011(C)阈值去噪采用软、硬阈值折衷的算法进行阈值去噪;0012(D)重构脉搏波。 0013所述步骤 (2)具体如下0014(a)因子分析可将原始9个脉搏通道数据序列划分为3个脉搏波数据组,每个数据组由在某个因子上的载荷较大,而在其它2个因子上的载荷均较小的几个时间序列所组成。 采用如下简便的方法进行空间降维在由3个因子决定的3个变量组中,分别取且仅取一个典型变量,组成降维之后的变量集合;0015(b)选取主因子脉搏波通道选择第1因子和第2因子上载荷最大的脉搏波通道为两路主因子脉搏波通道;0016(c)输出融合脉搏波对两路脉搏波信号做加权融合,最终输出理想脉搏波信号。 0017本发明的有益效果是本发明在不限制被测者正常活动的情况下,对其脉搏波进行24小时实时测量,并输出接近真实的脉搏波形曲线,用于后续分析。 本发明采用自组织传感器网络技术,以点阵形式把脉搏波传感器排列在手腕内侧。 在佩戴很短的时间内完成传感器网络的自适应调整,输出连续真实的脉搏波形曲线。 说明书101803911A2/5页4附图说明0018图1为本发明的硬件结构图;0019图2为本发明的脉搏波分析处理流程图;0020图3为本发明的原始脉搏波经过小波分解之后的各频段叠加图;0021图4为本发明的在MATLAB环境中采用SWT(一维平稳小波降噪)模拟小波降噪处理的过程图;0022图5为本发明的脉搏波变量在3个因子下的聚类图;0023图6为本发明的原始脉搏波变量在3个因子上的载荷图;0024图7为本发明的A类自相关度较大的脉搏波;0025图8为本发明的B类自相关度较大的脉搏波;0026图9为本发明的最终处理结束后输出脉搏波形图。 具体实施方式0027本发明自组织脉搏传感器中的滤波融合方法通过在手腕内侧桡动脉处放置多个压电式传感器点阵得到多路脉搏波曲线,其中每一路单点传感器可单独测得该点处脉搏波。 多路脉搏波曲线在信息融合中心进行数字滤波和因子分析。 首先,采用小波处理方法进行数字滤波,能有效地消除了脉搏波中混入的基线漂移,肌电干扰,工频干扰等噪声信号。 然后,通过因子分析对滤波后的多路脉搏信号做降维处理,去除其中严重失真的信号通道,同时优化选择两路脉搏波信号,再计算其连接权重系数,用于抵消不同运动负荷下的脉搏波畸变,最终融合为一路脉搏波输出。 采用本发明中的方法可以实时调整传感器点阵的输出权重,输出一路最接近真实的脉搏信号。 再通过无线通信模块与后续处理模块接合。 实现实时的脉搏信号监测分析。 0028具体来说,本发明采用手表链式腕带,在手腕内侧桡动脉处放置3行3列压电式传感器点阵。 在靠近脉搏待测区域下用可充气气垫或弹力柱装置使传感器充分接触桡动脉处的脉搏。 每一路单点传感器可单独测得该点处脉搏波。 9路脉搏波曲线在信息融合中心进行融合判断,实时调整传感器点阵的输出权重。 输出一路最接近真实的脉搏信号,通过无线通信模块与后续处理模块接合。 0029本发明的检测方法采用如下技术方案0030如图1所示,脉搏传感器网络通过滤波电路对采集到的9路脉搏波信号进行预处理,预处理之后的信号经过A/D变换送入信息融合中心(DSP模块),在这里对9路脉搏信号进行数字滤波和融合处理。 0031第一步用小波分析的方法进行数字滤波。 0032在数字滤波过程中,本发明中采用小波分解和小波包分解的降噪方法,来克服脉搏波中混入的基线漂移,肌电干扰,工频干扰等噪声信号。 0033 1、小波滤噪的步骤00341.1选择小波基0035同一信号,选取不同的小波函数进行处理,将得到不同的效果,所以小波函数的选取显得尤为重要。 为此,我们选取小波从以下四个方面着手 1、支集长度,表征了当时间或说明书101803911A3/5页5频率趋向于无穷大时,尺度函数与小波函数从一个有限值趋向于零的速度。 2、对称性,在信号处理中对避免相移有非常重要的作用。 3、消失矩阶数在数据压缩中有非常重要的作用。 4、正则性,对信号重构及获得较好的平滑效果十分有用。 0036对脉搏信号滤波来说,选择支集长度较短的小波可提高处理的实时性;选取对称性的小波可满足相移为基本线性,使脉搏信号不失真;选取正则性的小波可使重构以后的信号比较平滑。 满足以上三个条件的小波有Daubechies小波,Symmetry小波和Coiflet小波。 选取db 3、sym 8、coif4小波进行反复仿真,结果表明“sym8”小波滤波最适合脉搏波的滤波处理,因此,选择sym8作为小波基波。 00371.2选择尺度0038如图3,对原始脉搏波信号在尺度9上的分解波形可以看出,信号中的直流分量及趋势项明显地显现在较大的尺度上,尺度8,尺度9。 由于漂移信号主要为超低频信号分量,考虑到可以在小波重构的过程中用来消除基线漂移,故以sym8为小波基对脉搏波在尺度9上进行小波分解。 便于后面重构的时候消除大尺度上的基线漂移。 00391.3阈值去噪0040如图4,经过基线校正后的脉搏波信号进入一维平稳小波降噪处理阶段。 本发明中选择sym8基本小波,尺度为8。 然后进行小波分解。 肌电干扰噪声主要分布在低尺度上。 采用软阈值法对低尺度(level13)上的小波系数进行大幅度的衰减进而去除它与脉搏波信号的频带相重叠的部分。 即可达到消除高频噪声的目的。 为消除肌电干扰噪声的影响,对48层尺度上的系数,采用软、硬阈值折衷的算法进行阈值去噪。 保证重构信号与真实信号的最小方差。 00411.4重构脉搏波0042去掉噪声后的细节信号和平滑信号可以用来重构信号,为了消除基线偏移,只要在小波变换重构的过程中,将该尺度下的分量置零,就可以得到去除了直流及缓变趋势分量的合成信号。 0043因此,将含噪脉搏信号利用sym8小波进行9层小波分解,得到各层小波系数。 去除N大于等于9的小波分量。 0044在本研究中脉搏信号的采样频率为200Hz,sym8小波分解在尺度9下逼近信号的频率和功率极低,因此,原始脉搏波信号的低频信号的主要成分在经过基线矫正后不受影响。 0045在matlab小波工具箱中按照上述步骤演示滤波过程(如图4)0046 (1)启动SWT并装载信号0047采用Matlab(The MathWorks,Inc.)作为数据处理软件。 版本为Rxxa。 在Wavelet ToolboxMain Menu窗口选择【SWT De-noising1-D】按钮,装载要分析原始脉搏波数据文件。 0048 (2)对信号进行一维平稳小波变换0049选择基本小波为sym8,尺度为8。 经过小波分解,如图4左边一列图形。 显示分解后的低频和高频信号。 0050 (3)利用平稳小波变换来消噪0051选择固定软阈值,并且按照1.3中的方法调整各层次的阈值。 点击降噪命令。 结说明书101803911A4/5页6果如(图4)右下列波形所示。 最终输出波形见(图4)右上波形。 0052第二步经过滤噪处理之后的9路脉搏信号的融合处理。 0053通过因子分析(Factor Analysis)对滤噪后的数据进行空间降维,目的是消除多通道数据的空间线性相关性和剔除无用信息的干扰。 最终确定最优的传感器网络模型。 00542.1因子分析0055设定因子数目为3,采用promax算子进行因子旋转。 表1为原始9个变量在3个因子上的载荷(Loading)。 0056本发明中对脉搏波信号进行因子分析,可将原始9个脉搏通道数据序列划分为3个脉搏波数据组,每个数据组由在某个因子上的载荷较大,而在其它2个因子上的载荷均较小的几个时间序列所组成。 采用如下简便的方法进行空间降维在由3个因子决定的3个变量组中,分别取且仅取一个典型变量,组成降维之后的变量集合。 其中,典型变量的数学意义是在所有原始变量中,该变量在特定因子上具有最高的载荷(Loading)。 三个主因子的物理意义是第1因子上承载的信息最接近真实脉搏波;第2因子上承载的信息最接近运动干扰脉搏信号;第3因子上承载的信息最接近测量噪声。 0057在SPSS中进行因子分析,步骤如下0058 (1)启动SPSS并装载信号0059SPSS软件版本为SPSS16.0。 导入9路脉搏波的时间序列数据。 0060 (2)选择因子分析工具开始进行因子分析0061选择显示因子聚类图;设定因子数目为3;选择提取因子方法为PCA;旋转方法为Promax。 开始分析。 0062 (3)输出分析结果0063因子分析结束后导出分析结果,见图5,图6。 00642.2选取主因子脉搏波通道0065脉搏波信号因子分析之后产生3列主因子脉搏波信号。 把第1因子和第2因子上载荷(Loading)最大的脉搏波通道,标记为A路和B路脉搏波信号。 去除第3因子上对应的脉搏波采集通道,对应的是被严重失真的脉搏波通道。 其中,A路信号最能反映真实脉搏信息;B路信号为参考脉搏信号,无脉搏处的皮肤波动。 用于对不同运动情况下对A路脉搏信号去除扰动。 A路脉搏波信号与B路脉搏波信号以合适的权重融合输出最终的脉搏波信号。 同时,A路脉搏波信号和B路脉搏波信号获得传感器阵列中的最大链接权重。 00662.3输出融合脉搏波0067如图5所示。 在3个因子上9路变量被分成3类。 通过各个变量在因子上的载荷得分(图6)把脉搏波分成3类。 其中脉搏波变量V1,V5,V6,V7自相关度较大,聚成一类

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论