课题资料------01浅谈高中数学概念课的教学_第1页
课题资料------01浅谈高中数学概念课的教学_第2页
课题资料------01浅谈高中数学概念课的教学_第3页
课题资料------01浅谈高中数学概念课的教学_第4页
课题资料------01浅谈高中数学概念课的教学_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浅谈高中数学概念课的教学浅谈高中数学概念课的教学 摘摘 要 要 随着中学数学新课程标准的颁布实施和新一轮课程改革的全面开展 数学概念课的教学成为中学数学中至关重要的一项内容 是基础知识和基本技 能教学的核心 本文将结合教学过程中对概念教学的认识和实践作初步的探讨 以期得到同行的指教 关键词 关键词 数学概念 基本要求 实施教学 1 1 概念的认识与把握概念的认识与把握 1 11 1 对数学概念的认识对数学概念的认识 恩格斯曾经说过 在一定意义上 科学内容就是概念的体系 现代的 一些学者认为 数学的学习过程 就是不断地建立各种数学概念的过程 概念是客观事物本质属性 特征在人们头脑中的反映 是思维的基本单位 事物有很多属性 其中有的是本质的 有的是非本质的 本质属性就是决定该 事物之所以成为该事物并区别于其他事物的属性 是事物存在的根据 是与其 他事物区分的标志 如 圆是平面内到定点的距离等于定长的点的集合 这是 圆的本质属性 圆的概念就是这一本质属性的反映 至于圆的半径的长短就不 是圆的本质属性 而是非本质属性 圆的概念已舍弃它们 数学概念是反映现实世界的空间形式和数量关系的本质属性的思维形式 是对一类数学对象的本质属性的反映 数学概念是数学知识中最基本的内容 是数学认知结构的重要组成部分 它还是构建数学理论大厦的基石 是导出数 学定理和数学法则的逻辑基础 是数学学科系统的精髓和灵魂 从产生的背景来说 一般有两种情形 一是直接从客观事物的空间形式和 数量关系反映得来的 例如三角函数这个概念就是在 角 比 对应 等 一系列概念的基础上形成的 概念是主观的抽象形式与客观的具体内容的辩证 统一 是对客观事物更深刻 更完全的反映 1 21 2 概念的内涵和外延概念的内涵和外延 概念的内涵是指反映在概念中的对象的本质属性 概念的外延是指具有概 念所反映的本质属性的对象 内涵是概念的质的方面 即概念所反映的事物是 什么样子的 外延是概念的量的方面 即概念的适用范围 它说明概念反映的 是哪些事物 如复数这一概念 形如 a bi a b 为实数 的数 是其内涵 而 实数 虚数 则是其外延 如果学生对概念的内涵或外延不清楚 无形 之中就会缩小或扩大概念的使用范围 造成错误 1 31 3 数学概念的特点数学概念的特点 1 数学概念具有普遍性和严谨性 数学概念是数学研究对象的高度抽象和概括 反映的是数学对象的本质属 性 例如 正方体 的概念 我们并不是指某一个大小 形状 颜色确定的正 方体 而是这些具体大小 形状 颜色各异的正方体的抽象 也就是排除了这 类对象的具体物质内容 如大小 颜色 种类 以后抽象出的量的关系和形式 构造 反映的是这类对象数与形方面的内在的 固有的属性 所以在这一类对 象范围内具有普遍意义 数学概念对本质属性的刻画是非常严谨的 具有严密 性明确的规定性 2 数学概念具有抽象性和具体性 数学概念的抽象性主要体现在三个方面 第一 数学概念反映的是数学对 象的本质属性 那么它是抽象的 第二 数学概念都由反映概念本质特征的符 号来表示 如函数的概念用符号表示为 反函数的概念用符号表示为 等 使用了形式化 符号化的语言使数学概念更加抽象 第三 数学 的有些概念是 思维的自由想象 的产物 离现实世界很遥远 如 虚数 可见 数学概念具有高度的抽象性 正因为抽象程度愈高 与现实的原始对象联系 愈弱 才使得数学概念应用愈广泛 但不管怎么抽象 一个数学概念的背后有许多 具体内容作支撑 高层次的概念总是以低层次的概念为其具体内容 而且数学概 念是数学命题 数学推理的基础 因此就整个数学体系而言 数学概念又是非常具 体的 3 数学概念具有生成性与系列性 数学概念大多是在原始概念 原名 的基础上形成的 并采用逻辑定义的 方法 以语言或符号的形式使之固定 先前的概念往往是后续概念的基础 从而 形成了数学概念的系统结构 因此在学习时 要求学生循序渐进 扎扎实实的打好 基础 4 数学概念具有相对性与发展性 在某特定研究领域内 数学概念的意义始终是一致的 但数 形等概念本身处 于不断发展之中 例如 在小学里的数 指正有理数 在初中里的数 扩展到了实数 到 高中 扩展到复数 角的概念 也经历了锐角 任意角 空间角 直线的概念 从平面 直线到空间直线 其位置关系 也从初中的两平面直线相交 平行到高中两空间直 线的相交 平行 异面等 2 2 概念课教学的要求和目前的现状概念课教学的要求和目前的现状 2 12 1 概念课教学的基本要求概念课教学的基本要求 高中数学课程的总目标是 使学生在九年义务教育数学课程的基础上 进一 步提高作为未来公民所必要的数学素养 以满足个人发展与社会进步的需要 同 时高中数学课程标准指出 丰富学生的学习方式 改进学生的学习方法是高中数 学课程追求的基本理念 学生的数学学习活动不应只限于对概念 结论和技能的 记忆 模仿和接受 独立思考 自主探索 动手实践 合作交流 阅读自学等都是学 习数学的重要方式 在高中数学教学中 教师的讲授仍然是重要的教学方式之一 但要注意的是必须关注学生的主体参与 师生互动 高中数学课程在教育理念 学 科内容 课程资源的开发利用等方面都对教师提出了挑战 在教学中 教师应根 据高中数学课程的理念和目标 学生的认知特征和数学的特点 积极探索适合高 中学生数学学习的教学方式 2 22 2 目前概念课教学的现状目前概念课教学的现状 从平常数学概念的教学实际来看 学生往往会出现两种倾向 其一是有的学 生仅仅把数学概念看作一个名词而已 不重视 不求甚解 导致概念认识模糊 不 能很好地理解和运用概念 其二是有的学生对基本概念虽然重视但只是死记硬背 而 不去真正透彻理解 没有认识到很多概念 如函数 向量等 本质是一种数学观念 是一种处理问题的数学方法 长期下去会影响学生对数学基础知识和基本技能的 掌握和运用 只有真正掌握了数学中的基本概念 我们才能把握数学的知识系统 才能有正确 合理 迅速地进行运算 推理和论证 从一定意义上说 数学水平的高 低 取决于对数学概念掌握的程度 美国教育心理学家布鲁纳曾说过 获得的知识如果没有完满的结构将它联系 在一起 那是一个多半会被遗忘的知识 一串不连贯的论据在记忆中仅有短促的 可怜的寿命 因此 概念教学必须返璞归真 揭示数学概念的形成过程 让学生从 概念的现实原型 概念的抽象过程 数学思想的指导作用 形象表述和符号化的运 用等多方位理解一个数学概念 使之符合学生主动建构的教育原理 3 3 概念课教学应注意的几个方面概念课教学应注意的几个方面 波利亚说 教师讲了什么并非不重要 但更重要千百倍的是学生想了些什么 学生的思路应该在学生自己的头脑中产生 教师的作用在于系统地给学生发现事 物的机会 启动学生在允许的条件下亲自去发现尽可能多的东西 因此在教学中 教师应创设情境 使学生在情境中像数学家那样去想数学 经历比较 抽象 概括 假设 验证和分化等一系列的概念形成过程 从中学到研究问题和提出概念的思 想方法 在获得概念的同时培养学生的探索能力和创新精神 3 13 1 引入概念时创设情境引入概念时创设情境 概念的形成是一个积累渐进的过程 因此在概念的的教学中要遵循从具体到 抽象 从感性认识到理性认识的原则 学生的思维特点是从具体形象思维逐步向 抽象思维过渡的 这种过渡在很大程度上还是依靠丰富的感性材料 所以数学概 念不是靠教师讲出来的 而是靠学生自己去感悟 体验的 高中数学概念 有一部分来源于生产和生活实际 一部分来源于数学本身内 在需要 所以教学中要重视概念的引入 让学生明确引入概念的必要性 1 用实例 实物 模型或故事引入概念 形成数学概念的首要条件是使学生获得十分重要且合乎实际的感性材料 因 此在进行概念教学时 应注意创设情境 让数学与学生的现实生活密切结合 使学 生感受到数学是活的 是富有生命力的 不仅有利于学生对于所研究对象的感性 认识 并在此基础上认识其本质 还能促进数学直觉的形成 数学思维的发展 更 能激发学生思考和创造的源泉 同时 在现实问题的解决中发现的数学概念 形成 的数学思想方法 更能促进学生在以后遇到相关问题时自觉地运用有关的数学 经验去思考 解决问题 2 让学生亲自做试验 体验概念的形成 在教学中可借助富有探究性 挑战性的问题 让学生在试验中亲自体验数学 概念 通过自己的思考建立起对概念的理解 逐渐认识概念本质 如研究几何概型 时 可让学生亲自作转盘试验 了解到指针指向转盘圆周上每一点的可能性都是 一样的 而指针指向某奖品区 A 的弧上一点这一事件发生的概率只与 A 的几何度 量成正比 而与 A 的位置和形状无关 从而顺利理解几何概型的概念 3 在学生原有的基础上引入新概念 任何数学概念必定有与之相关的最近概念 因此教学中要以学生已掌握了的 知识为基础 引导学生探求新旧概念之间的区别和联系 如角的概念 三角函数的 概念都可以在初中的基础上扩展 这样有助于学生掌握相互联系的知识 提高学 生对数学知识之间的整体认识 4 由数学本身内在需要引入概念 中学数学的有些概念是为了解决数学内部的问题而引入的 如为了解决 X2 1 的解而引入了复数的概念 为了确定两条异面直线的位置而引入了两条异面直 线所成的角和距离等 这时不妨从问题出发 创设情境 让学生在认知冲突中激 发求知欲望 3 23 2 形成概念时探索交流形成概念时探索交流 学会学习是一个现代人生存和发展的首要条件 自主探究与合作交流是学生 理解和掌握知识的重要途径 新课程理念下的课堂是师生共同生活 共同发展的 场所 学生在自主探究与合作交流过程中 应主动地提出问题 自由地展开讨论和 交流 敢于尝试 学会倾听和进行自我反思 如果能在有限的合作时空里全员参与 在 互动中互帮互学 那么不仅能有助于增强学生的合作意识 而且还能为学生获得 终身学习的能力奠定基础 3 33 3 表述概念时必须准确表述概念时必须准确 概念形成之后 应及时让学生用语言表述出来 以加深对概念的印象 促进内 化 语言作为思维的物质外壳 教师可从学生的表述中得到反馈信息 了解 评价 学生的思维结果 由于数学概念是用科学的 精练的数学语言概括表达出来的 它 所揭示事物的本质属性必须确定 无矛盾 有根有据并合情合理 因此培养学生正 确的表述概念 能促进学生思维的深刻性 3 43 4 巩固概念应用变式巩固概念应用变式 初步形成的概念 巩固程度差 易受相近概念的干扰 适时利用变式训练有助 于纠正学生的思维偏差 学生在感知立体几何图形的过程中 往往会受到图形的 一些非本质属性的影响 把画在黑板上或书上的标准图形看作本质属性 如将正 三棱锥 S ABC 画成 A SBC 时 学生易错误地说它不是正三棱锥 因此利用变式图 形 如呈现若干个位置或大小不同的正三棱锥 让学生观察辩认 就有利于克服感 知图形时的消极影响 帮助学生从方位和量的比较中引起对知识更为深刻的正面 思考 使获得的概念更精确 更稳定 3 53 5 运用概念时联系实际运用概念时联系实际 枯燥的概念与学生的生活实际结合起来 对概念的理解就更透彻了 还能认 识到数学的价值 获得运用知识的能力 培养学生的实践能力对于提高学生的创 造力起着至关重要的作用 只有积极参与实践 才能发现新问题 提出新见解 新 思想 新方法 才能把握创造的机会进行成功的创造 提高创新能力 让学生用学 到的数学概念解决日常生活中的实际问题 是概念教学中培养学生应用意识的有 力手段 4 4 概念课教学在课堂实践中举例概念课教学在课堂实践中举例 课题 条件概率 教学过程 环节一 情境引入 在我们的生活的世界上 充满着不确定性 从流星坠落 到大自然的千变万化 从 婴儿诞生 到世间万物的繁衍生息 都充满奇异的随机现象 我们能根据现在预测 未来吗 这节课就让我们从生物的保护谈起吧 首先播放一段中华鲟视频 提出问题 中华鲟由出生算起活到 30 岁的概率为 0 8 活到 35 岁的概率为 0 4 大家看到的这条中华鲟现在恰好 30 岁 他能活到 35 岁的概率有多大呢 设计意图 从学生感兴趣的生物保护切入 引起学生的兴趣 激起学生探究 新知的欲望 学生答案可能是 0 4 0 32 0 5 等 为留悬念 教师暂不让学生阐述自己的 想法 提出 哪位同学的答案正确呢 这条中华鲟能活到 35 岁的概率究竟是多大 呢 当你研究了今天的课题就会明了 板书课题 条件概率 环节二 概念形成 投掷红 蓝两颗骰子 如果用 x 代表红骰子所得点数 用 y 代表蓝骰子所得点 数 这个随机试验的基本事件空间可以怎样表示 问题 1 1 事件 A 蓝色骰子的点数为 3 或 6 则 P A 2 事件 B 两颗骰子的点数之和大于 8 则 P B 3 事件 C 蓝色骰子的点数为 3 或 6 且两颗骰子的点数之和大于 8 则 P C 第 1 2 直接由学生口答 设计意图 以上三个问题可以让学生在回答的过程中复习了古典概型的概 率求法 为下面学习新知识做好知识方面的铺垫 第 3 题让一位同学回答 在得到正确答案后 老师给出积事件的定义 事件 C 可以理解为事件 A 和事件 B 同时发生 称为事件 A 与事件 B 的交 或 积 提出思考 1 能否用集合表示积事件 如何求积事件的概率 让学生画在笔记本上 体会积事件的含义 学生画文氏图 明确事件直 观表示 总结积事件概率的求法 设计意图 积事件的概率和条件概率是学生容易混淆的 让学生明确积事件 的概念为后面学习扫清障碍 思考 2 这个随机试验的基本事件空间为 大家考虑一下是否也可以看 作一个事件 思考 3 第一个问题叙述成事件发生的条件下 事件 A 发生的概率是多少 行不行 在学生了解到以前所学的概率可以认为是在基本事件空间发生下的概率 后 提出 4 事件 D 已知蓝色骰子的点数为 3 或 6 的前提下 两颗骰子的点数之和大 于 8 则 P D 让学生讨论回答并阐述想法 初步接触条件概率 在解决问题的过程中 学生会发现 既然事件 A 已经发生了 所以我们就只能 在 A 范围内研究 B 发生的概率 这样在 A 范围内 B 发生所包含的基本事件数直观 上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论