![[四年级数学知识点总结]高中数学必修四知识点总结.doc_第1页](http://file1.renrendoc.com/fileroot_temp2/2020-3/25/b91f1dce-8271-48f5-93da-2c472ae32c9d/b91f1dce-8271-48f5-93da-2c472ae32c9d1.gif)
![[四年级数学知识点总结]高中数学必修四知识点总结.doc_第2页](http://file1.renrendoc.com/fileroot_temp2/2020-3/25/b91f1dce-8271-48f5-93da-2c472ae32c9d/b91f1dce-8271-48f5-93da-2c472ae32c9d2.gif)
![[四年级数学知识点总结]高中数学必修四知识点总结.doc_第3页](http://file1.renrendoc.com/fileroot_temp2/2020-3/25/b91f1dce-8271-48f5-93da-2c472ae32c9d/b91f1dce-8271-48f5-93da-2c472ae32c9d3.gif)
![[四年级数学知识点总结]高中数学必修四知识点总结.doc_第4页](http://file1.renrendoc.com/fileroot_temp2/2020-3/25/b91f1dce-8271-48f5-93da-2c472ae32c9d/b91f1dce-8271-48f5-93da-2c472ae32c9d4.gif)
![[四年级数学知识点总结]高中数学必修四知识点总结.doc_第5页](http://file1.renrendoc.com/fileroot_temp2/2020-3/25/b91f1dce-8271-48f5-93da-2c472ae32c9d/b91f1dce-8271-48f5-93da-2c472ae32c9d5.gif)
已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四年级数学知识点总结高中数学必修四知识点总结(1) 高中数学必修四知识点总结高中数学必修四知识点总结 学习数学是为了探索宇宙的奥秘。高中孩子没学数学更是要参加高考取得好成绩。今天小编收集整理了高中数学必修四知识点总结,希望对您有帮助! 高中数学必修四知识点总结 角的概念的推广 弧度制 任意角的三角函数 同角三角函数的基本关系 正余弦诱导公式 两角和与差 二倍角的正弦、余弦、正切 正余弦函数的图像和性质 函数y=Asin(x+)的图像 正切函数的图像和性质 已知三角函数值求角 平面向量的基本概念 向量的加法与减法 实数与向量的积 平面向量的坐标计算 线段的定比分点 平面向量的数量积与运算律 平面向量数量积得坐标表示 平移(2) 高中数学必修四知识点总结高一必修一数学集合知识点总结 导语: 鉴于大家对高中数学集合知识点十分关注,小编在此为大家搜集整理了此文“高一数学必修一集合知识点总结”,供大家参考! 一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: 1.元素的确定性;2.元素的互异性;3.元素的无序性 说明: (1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。 (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。 (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。 (4)集合元素的三个特性使集合本身具有了确定性和整体性。 3、集合的表示:如我校的篮球队员,太平洋,大西洋,印度洋,北冰洋 1.用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,5 2.集合的表示方法:列举法与描述法。 注意啊:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+整数集Z有理数集Q实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作aA,相反,a不属于集合A记作a?A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 语言描述法:例:不是直角三角形的三角形 数学式子描述法:例:不等式x-3 2的解集是x?Rx-3 2或xx-3 2 4、集合的分类: 1.有限集含有有限个元素的集合 2.无限集含有无限个元素的集合 3.空集不含任何元素的集合例:xx2=-5 二、集合间的基本关系 1.“包含”关系子集 注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系(55,且55,则5=5) 实例:设A=xx2-1=0B=-1,1“元素相同” 结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B 任何一个集合是它本身的子集。AA 真子集:如果AB,且A1B那就说集合A是集合B的真子集,记作AB(或BA) 如果AB,BC,那么AC 如果AB同时BA那么A=B 3.不含任何元素的集合叫做空集,记为 规定:空集是任何集合的子集,空集是任何非空集合的真子集(3) 高中数学必修四知识点总结高一数学必修一知识点总结 下面是小编整理的高一数学必修一知识点总结,请阅读,上站,发现学习 高一数学必修一知识点总结 第一章 集合与函数概念 一、集合有关概念 1.集合的含义 2.集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合H,A,P,Y (3)元素的无序性: 如:a,b,c和a,c,b是表示同一个集合 3.集合的表示: 如:我校的篮球队员,太平洋,大西洋,印度洋,北冰洋 (1)用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,5 (2)集合的表示方法:列举法与描述法。 注意:常用数集及其记法:X Kb 1.C om 非负整数集(即自然数集) 记作:N 正整数集 :N*或 N+ 整数集: Z 有理数集: Q 实数集: R 1)列举法:a,b,c 2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合x R|x-3 2 ,x|x-3 2 3) 语言描述法:例:不是直角三角形的三角形 4) Venn图: 4、集合的分类: (1)有限集 含有有限个元素的集合 (2)无限集 含有无限个元素的集合 (3)空集 不含任何元素的集合 例:x|x2=-5 二、集合间的基本关系 1.“包含”关系-子集 注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A 2.“相等”关系:A=B (55,且55,则5=5) 实例:设 A=x|x2-1=0 B=-1,1 “元素相同则两集合相等” 即: 任何一个集合是它本身的子集。A A 真子集:如果A B,且A B那就说集合A是集合B的真子集,记作A B(或B A) 如果 A B, B C ,那么 A C 如果A B 同时 B A 那么A=B 3. 不含任何元素的集合叫做空集,记为 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 4.子集个数: 有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集 三、集合的运算 运算类型 交 集 并 集 补 集 定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作A交B),即A B=x|x A,且x B. 由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作A并B),即A B =x|x A,或x B). 设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 记作 ,即 CSA= 韦 恩 图 示 性 质 A A=A A = A B=B A A B A A B B A A=A A =A A B=B A A B A A B B (CuA) (CuB) = Cu (A B) (CuA) (CuB) = Cu(A B) A (CuA)=U A (CuA)= . 二、函数的有关概念 1.函数的概念 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数.记作: y=f(x),xA.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合f(x)| xA 叫做函数的值域. 注意: 1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。 求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合. (6)指数为零底不可以等于零, (7)实际问题中的函数的定义域还要保证实际问题有意义. 相同函数的判断方法:表达式相同(与表示自变量和函数值的字母无关); 定义域一致 (两点必须同时具备) 2.值域 : 先考虑其定义域 (1)观察法 (2)配方法 (3)代换法 3. 函数图象知识归纳 (1)定义: 在平面直角坐标系中,以函数 y=f(x) , (xA)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . (2) 画法 1.描点法: 2.图象变换法:常用变换方法有三种:1)平移变换2)伸缩变换3)对称变换 4.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间 (3)区间的数轴表示. 5.映射 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作“f(对应关系):A(原象) B(象)” 对于映射f:AB来说,则应满足: (1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的; (2)集合A中不同的元素,在集合B中对应的象可以是同一个; (3)不要求集合B中的每一个元素在集合A中都有原象。 6.分段函数 (1)在定义域的不同部分上有不同的解析表达式的函数。 (2)各部分的自变量的取值情况. (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集. 补充:复合函数 如果y=f(u)(uM),u=g(x)(xA),则 y=fg(x)=F(x)(xA) 称为f、g的复合函数。 二.函数的性质 1.函数的单调性(局部性质)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汽电机组拆装合同协议书
- 监理公司合同的补充协议
- 派遣固定期劳动合同范本
- 银行担保人签订合同范本
- 淘宝店铺运营服务协议书
- 生活垃圾代管协议书模板
- 私下将租赁合同转让协议
- 济南机场战略合作协议书
- 聘用协议性质为劳动合同
- 终止造林合同协议书范本
- WB/T 1115-2021体外诊断试剂温控物流服务规范
- GB/T 32350.2-2015轨道交通绝缘配合第2部分:过电压及相关防护
- GB/T 23261-2009石材用建筑密封胶
- GB/T 1796.1-2016轮胎气门嘴第1部分:压紧式内胎气门嘴
- 转包违法分包等违法行为认定查处管理办法讲座课件
- 劳资专管员任命文件(样本)
- 哔哩哔哩认证公函
- 托玛琳养生碗gg课件
- 水产养殖示范基地建设项目实施方案
- 行政后勤人员 三级安全教育培训记录卡
- 河北省张家口市各县区乡镇行政村村庄村名居民村民委员会明细
评论
0/150
提交评论