



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 正弦定理、余弦定理教学目的:使学生掌握正弦定理能应用解斜三角形,解决实际问题教学重点:正弦定理教学难点:正弦定理的正确理解和熟练运用授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、引言:在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角那么斜三角形怎么办?提出课题:正弦定理、余弦定理 二、讲解新课:正弦定理:在任一个三角形中,各边和它所对角的正弦比相等,即= =2R(R为ABC外接圆半径) 1直角三角形中:sinA= ,sinB=, sinC=1 即c=, c= , c= =2斜三角形中 证明一:(等积法)在任意斜ABC当中SABC= 两边同除以即得:=证明二:(外接圆法)如图所示,同理 =2R,2R证明三:(向量法)过A作单位向量垂直于 由+= 两边同乘以单位向量 得 (+)=则+=|cos90+|cos(90-C)=| |cos(90-A) =同理,若过C作垂直于得: = =正弦定理的应用 从理论上正弦定理可解决两类问题: 1两角和任意一边,求其它两边和一角;2两边和其中一边对角,求另一边的对角,进而可求其它的边和角(见图示)已知a, b和A, 用正弦定理求B时的各种情况:若A为锐角时:若A为直角或钝角时:三、讲解范例:例1 已知在解: 由 得 由得例2 在解:例3 解:,(2010广东理数)11.已知a,b,c分别是ABC的三个内角A,B,C所对的边,若a=1,b=, A+C=2B,则sinC= 解:由A+C=2B及A+ B+ C=180知,B =60由正弦定理知,即由知,则,四、课堂练习:1在ABC中,,则k为( )A2R BR C4R D(R为ABC外接圆半径)2ABC中,sin2A=sin2B+sin2C,则ABC为( )A直角三角形 B等腰直角三角形C等边三角形 D等腰三角形3在ABC中,求证:参考答案:1A,2A3五、小结 正弦定理,两种应用六、课后作业:1在ABC中,已知,求证:a2,b2,c2成等差数列证明:由已知得sin(BC)sin(BC)sin(AB)sin(AB)cos2Bcos2Ccos2Acos2B 2cos2Bcos2Acos2C 2sin2Bsin2Asin2C由正弦定理可得2b2a2c2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农村电商示范县创建资金申请报告:2025年电商法律法规完善
- 专业装修设计施工合作项目
- 2025年仿制药一致性评价对医药市场消费者行为的影响及应对策略
- 跨境电商母婴用品行业可持续发展战略研究报告
- 深部地震波传播特征-洞察及研究
- 年产5800万个培养皿灭菌袋项目可行性研究报告
- 年产7万吨聚醚酰胺反应釜项目可行性研究报告
- 新能源行业上市公司2025年研发投入与技术转化效率产业技术创新路径报告
- 综合解析冀教版8年级下册期末测试卷附参考答案详解(精练)
- 中医执业医师题库试题(巩固)附答案详解
- ECMO培训计划方案
- 物业管理中的控烟规章制度
- 云上贵州大数据(集团)有限公司招聘笔试冲刺题2024
- 反比例函数教材分析课件
- 空调工人安装合同模板
- Unit 8 Lets celebrate!教学设计2024-2025学年牛津译林版英语七年级上册
- 国际商务课件全套教程
- 22.3 实际问题与二次函数 课件 2024-2025学年人教版数学九年级上册
- 文言合集(1):120个文言实词小故事(教师版+学生版)
- 教科版(2024)小学科学一年级上册(全册)教案及反思(含目录)
- 【课件】2025届高三生物一轮复习备考策略研讨
评论
0/150
提交评论