




已阅读5页,还剩81页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽八年高考(2004-2011)2004年高考试题全国卷1 文科数学(必修+选修I)本试卷分第I卷(选择题)和第II卷(非选择题)两部分. 共150分. 考试时间120分钟.第I卷(选择题 共60分)球的表面积公式S=4其中R表示球的半径,球的体积公式V=,其中R表示球的半径参考公式:如果事件A、B互斥,那么P(A+B)=P(A)+P(B)如果事件A、B相互独立,那么P(AB)=P(A)P(B)如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率Pn(k)=CPk(1P)nk 一、选择题:本大题共12小题,每小题5分,共60分 . 1设集合U=1,2,3,4,5,A=1,2,3,B=2,5,则A(B)=( )A2B2,3C3D 1,32已知函数( )ABC2D23已知均为单位向量,它们的夹角为60,那么|=( )ABCD44函数的反函数是( )ABCD5的展开式中常数项是( )A14B14C42D426设若则=( )ABCD47椭圆的两个焦点为F1、F2,过F1作垂直于轴的直线与椭圆相交,一个交点为P,则=( )ABCD48设抛物线的准线与轴交于点Q,若过点Q的直线与抛物线有公共点,则直线的斜率的取值范围是( )AB2,2C1,1D4,49为了得到函数的图象,可以将函数的图象( )A向右平移个单位长度B向右平移个单位长度C向左平移个单位长度D向左平移个单位长度10已知正四面体ABCD的表面积为S,其四个面的中心分别为E、F、G、H,设四面体EFGH的表面积为T,则等于( )ABCD11从1,2,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( )ABCD12已知的最小值为( )ABCD+第卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13不等式x+x30的解集是 .14已知等比数列则该数列的通项= .15由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,APB=60,则动点P的轨迹方程为 .16已知a、b为不垂直的异面直线,是一个平面,则a、b在上的射影有可能是 .两条平行直线两条互相垂直的直线同一条直线一条直线及其外一点在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17(本小题满分12分)等差数列的前n项和记为Sn.已知()求通项;()若Sn=242,求n.18(本小题满分12分)求函数的最小正周期、最大值和最小值.19(本小题满分12分)已知在R上是减函数,求的取值范围.20(本小题满分12分)从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过测验的概率均为,每位男同学能通过测验的概率均为.试求:(I)选出的3位同学中,至少有一位男同学的概率;(II)10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.21(本小题满分12分)如图,已知四棱锥 PABCD,PBAD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120.(I)求点P到平面ABCD的距离;(II)求面APB与面CPB所成二面角的大小.22(本小题满分14分)设双曲线C:相交于两个不同的点A、B.(I)求双曲线C的离心率e的取值范围:(II)设直线l与y轴的交点为P,且求a的值.参考答案一、选择题 DBCBABCCBACB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13x|x0 1432n3 15 16三、解答题17本小题主要考查等差数列的通项公式、求和公式,考查运算能力.满分12分.解:()由得方程组 4分 解得 所以 7分()由得方程 10分 解得12分18本小题主要考查三角函数基本公式和简单的变形,以及三角函数的有关性质.满分12分.解:6分 所以函数的最小正周期是,最大值是最小值是12分19本小题主要考查导数的概念和计算,应用导数研究函数单调性的基本方法,考查综合运用数学知识解决问题的能力.满分12分.解:函数f(x)的导数:3分()当()时,是减函数. 所以,当是减函数;9分(II)当时,=由函数在R上的单调性,可知当时,)是减函数;()当时,在R上存在一个区间,其上有所以,当时,函数不是减函数.综上,所求的取值范围是(12分20本小题主要考查组合,概率等基本概念,独立事件和互斥事件的概率以及运用概率知识解决实际问题的能力,满分12分.解:()随机选出的3位同学中,至少有一位男同学的概率为 1;6分()甲、乙被选中且能通过测验的概率为 ;12分21本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分. (I)解:如图,作PO平面ABCD,垂足为点O.连结OB、OA、OD、OB与AD交于点E,连结PE. ADPB,ADOB,PA=PD,OA=OD,于是OB平分AD,点E为AD的中点,所以PEAD.由此知PEB为面PAD与面ABCD所成二面角的平面角,4分PEB=120,PEO=60由已知可求得PE=PO=PEsin60=,即点P到平面ABCD的距离为.6分(II)解法一:如图建立直角坐标系,其中O为坐标原点,x轴平行于DA.连结AG.又知由此得到:所以等于所求二面角的平面角,10分于是所以所求二面角的大小为.12分解法二:如图,取PB的中点G,PC的中点F,连结EG、AG、GF,则AGPB,FG/BC,FG=BC.ADPB,BCPB,FGPB,AGF是所求二面角的平面角.9分AD面POB,ADEG.又PE=BE,EGPB,且PEG=60.在RtPEG中,EG=PEcos60=.在RtPEG中,EG=AD=1. 于是tanGAE=,又AGF=GAE. 所以所求二面角的大小为arctan.12分22(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分14分.解:(I)由C与t相交于两个不同的点,故知方程组有两个不同的实数解.消去y并整理得 (1a2)x2+2a2x2a2=0. 2分双曲线的离心率(II)设8分由于x1,x2都是方程的根,且1a20,2005年高考文科数学全国卷试题及答案 本试卷分第卷(选择题)和第卷(非选择题)两部分第卷1至2页第卷3到10页考试结束后,将本试卷和答题卡一并交回第卷注意事项:1答第卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上2每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再选涂其它答案标号不能答在试题卷上3本卷共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的参考公式:如果事件A、B互斥,那么 球是表面积公式 如果事件A、B相互独立,那么 其中R表示球的半径 球的体积公式如果事件A在一次试验中发生的概率是P,那么 n次独立重复试验中恰好发生k次的概率 其中R表示球的半径一、选择题(1)设直线过点,且与圆相切,则的斜率是(A)(B)(C)(D)(2)设为全集,是的三个非空子集,且,则下面论断正确的是(A)(B)(C)(D)(3)一个与球心距离为1的平面截球所得的圆面面积为,则球的表面积为(A)(B)(C)(D)(4)函数,已知在时取得极值,则=(A)2(B)3(C)4(D)5(5)如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且均为正三角形,EFAB,EF=2,则该多面体的体积为(A) (B) (C) (D)(6)已知双曲线的一条准线为,则该双曲线的离心率为(A)(B)(C)(D)(7)当时,函数的最小值为(A)2(B)(C)4(D)(8)反函数是(A)(B)(C)(D)(9)设,函数,则使的的取值范围是(A) (B)(C) (D)(10)在坐标平面上,不等式组所表示的平面区域的面积为(A)(B)(C)(D)2(11)在中,已知,给出以下四个论断:其中正确的是(A)(B)(C)(D)(12)点O是三角形ABC所在平面内的一点,满足,则点O是的(A)三个内角的角平分线的交点(B)三条边的垂直平分线的交点(C)三条中线的交点(D)三条高的交点第卷注意事项:1用钢笔或圆珠笔直接答在试题卷上2答卷前将密封线内的项目填写清楚3本卷共10小题,共90分 二、本大题共4小题,每小题4分,共16分,把答案填在题中横线上 (13)若正整数m满足,则m = (14)的展开式中,常数项为 (用数字作答)(15)从6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法共有 种(16)在正方形中,过对角线的一个平面交于E,交于F, 四边形一定是平行四边形 四边形有可能是正方形 四边形在底面ABCD内的投影一定是正方形 四边形有可能垂直于平面以上结论正确的为 (写出所有正确结论的编号)三、解答题:本大题共6小题,共74分解答应写出文字说明,证明过程或演算步骤 (17)(本大题满分12分)设函数图像的一条对称轴是直线()求;()求函数的单调增区间;()画出函数在区间上的图像(18)(本大题满分12分)已知四棱锥P-ABCD的底面为直角梯形,ABDC,底面ABCD,且PA=AD=DC=AB=1,M是PB的中点()证明:面PAD面PCD;()求AC与PB所成的角;()求面AMC与面BMC所成二面角的大小(19)(本大题满分12分)已知二次函数的二次项系数为,且不等式的解集为()若方程有两个相等的根,求的解析式;()若的最大值为正数,求的取值范围(20)(本大题满分12分)9粒种子分种在甲、乙、丙3个坑内,每坑3粒,每粒种子发芽的概率为,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没发芽,则这个坑需要补种()求甲坑不需要补种的概率;()求3个坑中恰有1个坑不需要补种的概率;()求有坑需要补种的概率(精确到)(21)(本大题满分12分)设正项等比数列的首项,前n项和为,且()求的通项;()求的前n项和(22)(本大题满分14分)已知椭圆的中心为坐标原点O,焦点在轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与共线()求椭圆的离心率;()设M为椭圆上任意一点,且,证明为定值2005年高考文科数学全国卷试题及答案 参考答案一、选择题(本题考查基本知识和基本运算,每小题5分,满分60分)1C 2C 3B 4D 5A 6D 7C 8B 9C 10B 11B 12D二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分13155 1470 15100 16三、解答题17本小题主要考查三角函数性质及图像的基本知识,考查推理和运算能力,满分12分解:()的图像的对称轴, ()由()知由题意得所以函数()由x0y1010故函数18本小题主要考查直线与平面垂直、直线与平面所成角的有关知识及思维能力和空间想象能力.考查应用向量知识解决数学问题的能力满分12分方案一:()证明:PA面ABCD,CDAD,由三垂线定理得:CDPD.因而,CD与面PAD内两条相交直线AD,PD都垂直,CD面PAD.又CD面PCD,面PAD面PCD. ()解:过点B作BE/CA,且BE=CA,则PBE是AC与PB所成的角.连结AE,可知AC=CB=BE=AE=,又AB=2,所以四边形ACBE为正方形. 由PA面ABCD得PEB=90在RtPEB中BE=,PB=, ()解:作ANCM,垂足为N,连结BN.在RtPAB中,AM=MB,又AC=CB,AMCBMC,BNCM,故ANB为所求二面角的平面角CBAC,由三垂线定理,得CBPC,在RtPCB中,CM=MB,所以CM=AM.在等腰三角形AMC中,ANMC=,. AB=2,故所求的二面角为方法二:因为PAPD,PAAB,ADAB,以A为坐标原点AD长为单位长度,如图建立空间直角坐标系,则各点坐标为A(0,0,0)B(0,2,0),C(1,1,0),D(1,0,0),P(0,0,1),M(0,1,.()证明:因又由题设知ADDC,且AP与与AD是平面PAD内的两条相交直线,由此得DC面PAD.又DC在面PCD上,故面PAD面PCD()解:因由此得AC与PB所成的角为()解:在MC上取一点N(x,y,z),则存在使要使为所求二面角的平面角.19本小题主要考查二次函数、方程的根与系数关系,考查运用数学知识解决问题的能力.满分12分解:()由方程 因为方程有两个相等的根,所以,即 由于代入得的解析式 ()由及由 解得 故当的最大值为正数时,实数a的取值范围是20本小题主要考查相互独立事件和互斥事件有一个发生的概率的计算方法,考查运用概率知识解决实际问题的能力. 满分12分()解:因为甲坑内的3粒种子都不发芽的概率为,所以甲坑不需要补种的概率为 ()解:3个坑恰有一个坑不需要补种的概率为 ()解法一:因为3个坑都不需要补种的概率为,所以有坑需要补种的概率为 解法二:3个坑中恰有1个坑需要补种的概率为恰有2个坑需要补种的概率为 3个坑都需要补种的概率为 所以有坑需要补种的概率为 21本小题主要考查等比数列的基本知识,考查分析问题能力和推理能力,满分12分解:()由 得 即可得因为,所以 解得,因而 ()因为是首项、公比的等比数列,故则数列的前n项和 前两式相减,得 即 22本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分14分(1)解:设椭圆方程为则直线AB的方程为,代入,化简得.令A(),B),则由与共线,得又,即,所以,故离心率(II)证明:(1)知,所以椭圆可化为设,由已知得 在椭圆上,即由(1)知=0又,代入得故为定值,定值为12006年普通高等学校招生全国统一考试试卷文科数学试题及答案(安徽卷)参考公式:如果时间A、B互斥,那么如果时间A、B相互独立,那么如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率球的表面积公式,其中R表示球的半径球的体积公式,其中R表示球的半径第卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。(1)设全集,集合,则等于( )A B C D 解:,则,故选B(2)不等式的解集是( )A B C D解:由得:,即,故选D。(3)函数的反函数是()A B C D解:由得:,所以为所求,故选D。(4)“”是“的()A必要不充分条件 B充分不必要条件C充分必要条件 D既不充分也不必要条件解:条件集是结论集的子集,所以选B。(5)若抛物线的焦点与椭圆的右焦点重合,则的值为( )A B C D解:椭圆的右焦点为(2,0),所以抛物线的焦点为(2,0),则,故选D。(6)表面积为 的正八面体的各个顶点都在同一个球面上,则此球的体积为 A B C D解:此正八面体是每个面的边长均为的正三角形,所以由知,则此球的直径为,故选A。(7)直线与圆没有公共点,则的取值范围是A B C D 解:由圆的圆心到直线大于,且,选A。(8)对于函数,下列结论正确的是( )A有最大值而无最小值 B有最小值而无最大值C有最大值且有最小值 D既无最大值又无最小值解:令,则函数的值域为函数的值域,而是一个减函减,故选B。(9)将函数的图象按向量平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( ) A BC D解:将函数的图象按向量平移,平移后的图象所对应的解析式为,由图象知,所以,因此选C。(10)如果实数满足条件 ,那么的最大值为( )A B C D解:当直线过点(0,-1)时,最大,故选B。(11)如果的三个内角的余弦值分别等于的三个内角的正弦值,则( )A和都是锐角三角形 B和都是钝角三角形C是钝角三角形,是锐角三角形D是锐角三角形,是钝角三角形解:的三个内角的余弦值均大于0,则是锐角三角形,若是锐角三角形,由,得,那么,所以是钝角三角形。故选D。(12)在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为( ) A B C D解:在正方体上任选3个顶点连成三角形可得个三角形,要得直角非等腰三角形,则每个顶点上可得三个(即正方体的一边与过此点的一条面对角线),共有24个,得,所以选C。2006年普通高等学校招生全国统一考试文科数学(安徽卷)第卷(非选择题 共90分)注意事项:请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效。二、填空题:本大题共4小题,每小题4分,共16分,把答案填写在答题卡的相应位置。(13)设常数,展开式中的系数为,则_。解:,由。(14)在中,M为BC的中点,则_。(用表示)解:,所以。(15)函数对于任意实数满足条件,若则_。解:由得,所以,则。(16)平行四边形的一个顶点A在平面内,其余顶点在的同侧,已知其中有两个顶点到的距离分别为1和2 ,那么剩下的一个顶点到平面的距离可能是:1; 2; 3; 4; 以上结论正确的为_。(写出所有正确结论的编号)ABCD第16题图A1解:如图,B、D到平面的距离为1、2,则D、B的中点到平面的距离为,所以C到平面的距离为3;B、C到平面的距离为1、2,D到平面的距离为,则,即,所以D到平面的距离为1;C、D到平面的距离为1、2,同理可得B到平面的距离为1;所以选。三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤(17)(本大题满分12分)已知()求的值;()求的值。解:()由,得,所以。(),。(18)(本大题满分12分)在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较。在试制某种牙膏新品种时,需要选用两种不同的添加剂。现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用。根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验。()求所选用的两种不同的添加剂的芳香度之和等于4的概率;()求所选用的两种不同的添加剂的芳香度之和不小于3的概率;解:设“所选用的两种不同的添加剂的芳香度之和等于4”的事件为A,“所选用的两种不同的添加剂的芳香度之和不小于3”的事件为BABCDEFOP第19题图H()芳香度之和等于4的取法有2种:、,故。()芳香度之和等于1的取法有1种:;芳香度之和等于2的取法有1种:,故。(19)(本大题满分12分)如图,P是边长为1的正六边形ABCDEF所在平面外一点,P在平面ABC内的射影为BF的中点O。()证明;()求面与面所成二面角的大小。解:()在正六边形ABCDEF中,为等腰三角形,P在平面ABC内的射影为O,PO平面ABF,AO为PA在平面ABF内的射影;O为BF中点,AOBF,PABF。()PO平面ABF,平面PBF平面ABC;而O为BF中点,ABCDEF是正六边形 ,A、O、D共线,且直线ADBF,则AD平面PBF;又正六边形ABCDEF的边长为1,。过O在平面POB内作OHPB于H,连AH、DH,则AHPB,DHPB,所以为所求二面角平面角。在中,OH=,=。在中,;而()以O为坐标原点,建立空间直角坐标系,P(0,0,1),A(0,,0),B(,0,0),D(0,2,0),设平面PAB的法向量为,则,得,;设平面PDB的法向量为,则,得,;(20)(本大题满分12分)设函数,已知是奇函数。()求、的值。()求的单调区间与极值。证明(),。从而是一个奇函数,所以得,由奇函数定义得;()由()知,从而,由此可知,和是函数是单调递增区间;是函数是单调递减区间;在时,取得极大值,极大值为,在时,取得极小值,极小值为。(21)(本大题满分12分)在等差数列中,前项和满足条件, ()求数列的通项公式;()记,求数列的前项和。解:()设等差数列的公差为,由得:,所以,即,又,所以。()由,得。所以,当时,;当时,即。(22)(本大题满分14分)如图,F为双曲线C:的右焦点。P为双曲线C右支上一点,且位于轴上方,M为左准线上一点,为坐标原点。已知四边形为平行四边形,。OFxyPM第22题图HN()写出双曲线C的离心率与的关系式;()当时,经过焦点F且平行于OP的直线交双曲线于A、B点,若,求此时的双曲线方程。解:四边形是,作双曲线的右准线交PM于H,则,又,。()当时,双曲线为,设P,则,所以直线OP的斜率为,则直线AB的方程为,代入到双曲线方程得:,又,由得:,解得,则,所以为所求。2007年普通高等学招生全国统一考试(安徽卷)数 学(文科)本试卷分第卷(选择题)和第卷(非选择题)两部分,第卷第1至第2页,第卷第3至第4页。全卷满分150分,考试时间120分钟。考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。2.答第卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。3.答第卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写。在试题卷上作答无效。4.考试结束,监考员将试题卷和答题卡一并收回。参考公式:如果事件、互斥,那么球的表面积公式如果事件、相互独立,那么其中表示球的半径球的体积公式1+2+n=+其中表示球的半径+第卷(选择题共55分)一、选择题:本大题共11小题,每小题5分,共55分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若,则(A)(B)(C)(D) (2)椭圆的离心率为(A)(B)(C)(D)(3)等差数列的前项和为若(A)12(B)10(C)8(D)6(4)下列函数中,反函数是其自身的函数为(A)(B)(C) (D) (5)若圆的圆心到直线的距离为,则a的值为(A)-2或2(B)(C)2或0(D)-2或0(6)设均为直线,其中在平面内,则“l”是“”的(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件(7)图中的图象所表示的函数的解析式为(A) (0x2) (B) (0x2)(C) (0x2)(D) (0x2)(8)设a1,且,则的大小关系为(A) nmp(B) mpn(C) mnp(D) pmn(9)如果点P在平面区域上,点Q在曲线最小值为(A)(B)(C)(D)(10)把边长为的正方形ABCD沿对角线AC折成直二面角,折成直二面角后,在A,B,C,D四点所在的球面上,B与D两点之间的球面距离为(A)(B)(C)(D) (11)定义在R上的函数f (x)既是奇函数,又是周期函数,T是它的一个正周期.若将方程f (x)=0在闭区-T,T上的根的个数记为n,则n可能为(A)0(B)1(C)3(D)52007年普通高等学校招生全国统一考试(安徽卷)数 学(理科)第卷(非选择题 共95分)注意事项:请用0.5毫米黑色水签字笔在答题卡上书写作答,在试题卷上书写作答无效.二、填空题:本大共4小题,每小题4分,共16分,把答案填在答题卡的相应位置.(12)已知,则( 的值等于 .(13) 在四面体O-ABC中,为BC的中点,E为AD的中点,则= (用a,b,c表示)(14)在正方体上任意选择两条棱,则这两条棱相互平行的概率为 .(15)函数的图象为C,如下结论中正确的是 (写出所有正确结论的编号).图象C关于直线对称; 图象C关于点对称;函数)内是增函数;由的图象向右平移个单位长度可以得到图象C.三、解答题:本大题共6小题,共79分.解答应写出文字说明、证明过程或演算步骤.(16)(本小题满分10分)解不等式0.(17) (本小题满分14分)如图,在六面体中,四边形ABCD是边 长为2的正方形,四边形是边长为1的正方形,平面,平面ABCD, ()求证:A1C1与AC共面,B1D1与BD共面()求证:平面()求二面角的大小(用反三角函数值表示). 第(17)题图(18)(本小题满分14分)设F是抛物线G:x2=4y的焦点.()过点P(0,-4)作抛物线G的切线,求切线方程:()设A、B为势物线G上异于原点的两点,且满足,延长AF、BF分别交抛物线G于点C,D,求四边形ABCD面积的最小值.(19)(本小题满分13分)在医学生物学试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔. ()求笼内恰好剩下1只果蝇的概率;()求笼内至少剩下5只果蝇的概率.(20)(本小题满分14分)设函数f(x)=-cos2x-4tsincos+4t2+t2-3t+4,xR,其中1,将f(x)的最小值记为g(t).()求g(t)的表达式;()诗论g(t)在区间(-1,1)内的单调性并求极值.(21)(本小题满分14分)某国采用养老储备金制度,公民在就业的第一年就交纳养老储备金,数目为a1,以后第年交纳的数目均比上一年增加d(d0),因此,历年所交纳的储备金数目a1,a2,是一个公差为d的等差数列,与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利,这就是说,如果固定年利率为r(r0),那么,在第n年末,第一年所交纳的储备金就变为n(1+r)n-1,第二年所交纳的储备金就变为a2(1+r)n-2,,以Tn表示到第n年末所累计的储备金总额.()写出Tn与Tn-1(n2)的递推关系式;()求证:Tn=An+Bn,其中是一个等比数列,是一个等差数列.2007年普通高等学校招生全国统一考试(安徽卷)数学(文史)参考答案一、选择题:本题考查基本知识的基本运算每小题5分,满分55分题号1234567891011答案DACDCABBACD(1)若,则,选D。(2)椭圆中,离心率为,选A。(3)等差数列的前项和为,若则=2, ,选C。 (4)下列函数中,反函数是其自身的函数为,选D。 (5)若圆的圆心(1,2)到直线的距离为, , a=2或0,选C。 (6)设均为直线,其中在平面内,若“l”则“”,反之若“”,当m/n时,无法判断“l”,所以“l”是“”的充分不必要条件,选A。 (7)图中的图象所表示的函数当0x1时,它的解析式为,当1x2时,解析式为,解析式为(0x2),选B。 (8)设a1, ,, 的大小关系为mpn,选B。(9)点P在平面区域上,画出可行域,点Q在曲线最小值圆上的点到直线的距离,即圆心(0,2)到直线的距离减去半径1,得,选A。 (10)把边长为的正方形ABCD沿对角线AC折成直二面角,折成直二面角后,在A,B,C,D四点所在的球面上,球的半径为1,B与D两点恰好是两条垂直的半径的端点,它们之间的球面距离为个大圆周长,即,选C。 (11) 定义在R上的函数是奇函数,又是周期函数,是它的一个正周期,则可能为5,选D。二、填空题:本题考查基本知识和基本运算每小题4分,满分16分题号12131415答案(12) 已知, 则(=256(13) 在四面体OABC中,为BC的中点,E为AD的中点,则=。(14)在正方体上任意选择两条棱,有种可能,这两条棱相互平行的选法有种,所以概率。(15)函数的图象为C,图象关于直线对称,当k=1时,图象C关于对称;正确;图象C关于点对称,当k=1时,恰好为关于点对称;正确; x时,(,), 函数在区间内是增函数;正确;由的图象向右平移个单位长度可以得,得不到图象C. 不正确。所以应填。三、解答题16本小题主要考查三角函数的基本性质,含绝对值不等式的解法,考查基本运算能力本小题满分10分解:因为对任意,所以原不等式等价于即,故解为所以原不等式的解集为17本小题主要考查直线与平面的位置关系、平面与平面的位置关系、二面角及其平面角等有关知识,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力本小题满分14分ABCD解法1(向量法):以为原点,以所在直线分别为轴,轴,轴建立空间直角坐标系如图,则有()证明:与平行,与平行,于是与共面,与共面()证明:,与是平面内的两条相交直线平面又平面过平面平面()解:设为平面的法向量,于是,取,则,设为平面的法向量,于是,取,则,ABCD二面角的大小为解法2(综合法):()证明:平面,平面,平面平面于是,设分别为的中点,连结,有,于是由,得,故,与共面过点作平面于点,则,连结,于是,所以点在上,故与共面()证明:平面,又(正方形的对角线互相垂直),与是平面内的两条相交直线,平面又平面过,平面平面()解:直线是直线在平面上的射影,根据三垂线定理,有过点在平面内作于,连结,则平面,于是,所以,是二面角的一个平面角根据勾股定理,有,有,二面角的大小为18本小题主要考查抛物线的方程与性质,抛物线的切点与焦点,向量的数量积,直线与抛物线的位置关系,平均不等式等基础知识,考查综合分析问题、解决问题的能力本小题满分14分解:(I)设切点由,知抛物线在点处的切线斜率为,故所求切线方程为即因为点在切线上所以,所求切线方程为(II)设,由题意知,直线的斜率存在,由对称性,不妨设因直线过焦点,所以直线的方程为点的坐标满足方程组得,由根与系数的关系知因为,所以的斜率为,从而的方程为同理可求得当时,等号成立所以,四边形面积的最小值为19本小题主要考查排列、组合知识与等可能事件、互斥事件概率的计算,运用概率知识分析问题及解决实际问题的能力本小题满分13分解:以表示恰剩下只果蝇的事件以表示至少剩下只果蝇的事件可以有多种不同的计算的方法方法1(组合模式):当事件发生时,第只飞出的蝇子是苍蝇,且在前只飞出的蝇子中有1只是苍蝇,所以方法2(排列模式):当事件发生时,共飞走只蝇子,其中第只飞出的蝇子是苍蝇,哪一只?有两种不同可能在前只飞出的蝇子中有只是果蝇,有种不同的选择可能,还需考虑这只蝇子的排列顺序所以由上式立得;20本小题主要考查同角三角函数的基本关系,倍角的正弦公式,正弦函数的值域,多项式函数的导数,函数的单调性,考查应用导数分析解决多项式函数的单调区间,极值与最值等问题的综合能力本小题满分14分解:(I)我们有 由于,故当时,达到其最小值,即 (II)我们有列表如下:极大值极小值由此可见,在区间和单调增加,在区间单调减小,极小值为,极大值为21本小题主要考查等差数列、等比数列的基本概念和基本方法,考查学生阅读资料、提取信息、建立数学模型的能力、考查应用所学知识分析和解决实际问题的能力本小题满分14分解:()我们有(),对反复使用上述关系式,得 ,在式两端同乘,得,得即如果记,则其中是以为首项,以为公比的等比数列;是以为首项,为公差的等差数列2008年普通高等学校招生全国统一考试(安徽卷)数 学(文科)本试卷分第卷(选择题)和第卷(非选择题)两部分,第卷第1至第2页,第卷第3至第4页全卷满分150分,考试时间120分钟考生注意事项:1 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致2 答第卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再选涂其他答案标号3 答第卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写在试题卷上作答无效4 考试结束,监考员将试题卷和答题卡一并收回参考公式:如果事件互斥,那么球的表面积公式 其中表示球的半径如果事件相互独立,那么 球的体积公式 其中表示球的半径 第I卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的(1)若为位全体正实数的集合,则下列结论正确的是( )A B CD解:是全体非正数的集合即负数和0,所以(2)若,, 则( )A(1,1)B(1,1)C(3,7)D(-3,-7) 解:向量基本运算 (3)已知是两条不同直线,是三个不同平面,下列命题中正确的是( )ABC D 解:定理:垂直于一个平面的两条直线互相平行,故选B。(4)是方程至少有一个负数根的( )A必要不充分条件 B充分不必要条件C充分必要条件 D既不充分也不必要条件解:当,得a1时方程有根。a0时,方程有负根,又a=1时,方程根为,所以选B(5)在三角形中,,则的大小为( )ABCD解:由余弦定理,(6)函数的反函数为A B C D 解:由原函数定义域是反函数的值域,排除B,D两个;又原函数不能取1, 不能取1,故反函数定义域不包括1,选C .(直接求解也容易)(7)设则中奇数的个数为( )A2B3C4D5解:由题知,逐个验证知,其它为偶数,选A。(8)函数图像的对称轴方程可能是( )ABCD解:的对称轴方程为,即,(9)设函数 则( )A有最大值B有最小值C是增函数D是减函数解:,由基本不等式有最大值,选A(10)若过点的直线与曲线有公共点,则直线的斜率的取值范围为( )ABCD解:解:设直线方程为,即,直线与曲线有公共点,圆心到直线的距离小于等于半径 ,得,选择C另外,数形结合画出图形也可以判断C正确。(11) 若为不等式组表示的平面区域,则当从2连续变化到1时,动直线 扫过中的那部分区域的面积为 ( )AB1 CD5解:如图知区域的面积是OAB去掉一个小直角三角形。(阴影部分面积比1大,比小,故选C,不需要算出来) (12)12名同学合影,站
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 押题宝典教师招聘之《小学教师招聘》模考模拟试题及参考答案详解(培优b卷)
- 教师招聘之《小学教师招聘》从业资格考试真题附完整答案详解(易错题)
- 教师招聘之《小学教师招聘》能力测试B卷附答案详解(完整版)
- 2025年教师招聘之《幼儿教师招聘》考前冲刺模拟题库附答案详解【考试直接用】
- 报关实习总结心得
- 2025年教师招聘之《小学教师招聘》综合提升练习题附答案详解(考试直接用)
- 2025年教师招聘之《小学教师招聘》练习试题含完整答案详解【名校卷】
- 2025年翻译资格证(NAATI)考试题库(附答案和详细解析)
- 2025年时事政治考试100题及答案
- 合肥市生育保险与职工基本医疗保险合并实施:成效、挑战与优化路径
- 秋形势与政策正确认识中国经济热点问题-教案2025版本
- 药品注册审评员考核试题及答案
- GB/T 7251.10-2025低压成套开关设备和控制设备第10部分:规定成套设备的指南
- 森林防灭火知识培训材料课件
- 成本管控的课件
- 2025年全国中小学校党组织书记网络培训示范班在线考试题库及答案
- CT检查的课件教学课件
- 2025年学校意识形态工作要点
- 领导科学概论课件
- 煤矿安全规程(防治水)课件
- 疥疮防与治课件
评论
0/150
提交评论