52用代入法解二元一次方程组(1)_第1页
52用代入法解二元一次方程组(1)_第2页
52用代入法解二元一次方程组(1)_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

代入消元法解二元一次方程组代入消元法解二元一次方程组 教学目标教学目标 1 知识与技能 知识与技能 会用代入消元法解二元一次方程组 2 过程与方法 过程与方法 了解解二元一次方程组的消元思想 初步体现数学 研究中 化未知为已知 的化归思想 从而 变陌生为熟悉 3 情感 态度与价值观 情感 态度与价值观 利用小组合作探讨学习 使学生领会朴素 的辩证唯物主义思想 教学重难点教学重难点 1 重点 重点 用代入法解二元一次方程组 基本方法是消元化二元为一 元 2 难点 难点 用代入法解二元一次方程组的基本思想是化归 化陌生为熟悉 教学方法教学方法 师生互动 合作交流 探索总结 教学过程教学过程 一 一 复习引入复习引入 上节课我们认识了什么是二元一次方程组的问题 并且经过大家 的共同努力 得出了二元一次方程组 x y 2 x 1 2 y 1 为了解决实际问题 这就需要解这个二元一次方程组 二 二 新课探究新课探究 一元一次方程我们会解 二元一次方程组如何解呢 我们大家知道二元一次方程只需要消去一个未知数就可变为一元 一次方程 那么我们发 现 由 得y x 2 由于方程组相同的字母表示同一个未知数 所以方程 中的y也等 于x 2 可以用x 2代替方程 中的y 这样就得到大家会解的一元一次方程了 三 三 例题分析例题分析 我们知道了解二元一次方程组的一种思路 下面我们来做一做 例1 解方程组 3x 2y 8 x 2 3 y 解 将 代入 得3 y 3 2y 14 3y 9 2y 14 5y 5 y 1 将y 1代入 得x 4 所以原方程组的解是 x 4 y 1 例2 解方程组 2x 3y 16 x 4y 13 教师先分析 此题不同于例1 即用含有一个未知数的代数式表示另一个未知数 式不能直 接代入 那么我们应当怎样处理才能转化为例1 式这样的形式 呢 请同学回答 应先对 式进行恒等变化 把它化为例1中 式那样的形式 分小组合作完成上述例题 请两个小组的代表上黑板上来板演 解 由 得 x 13 4y 将 代入 得2 13 4 S 3y 16 26 8y 3y 16 5y 10 y 2 将代入 得 x 5 所以原方程组的解是 x 5 y 2 四 四 重点突破 重点突破 上面解方程组的基本思路是什么 主要步骤有哪些 上面解方程组的基本思路是 消元 把 二元 变为 一元 主要步骤是 将其中一个方程中的 某个未知数用含有另一个未知数的代数式表示出来 将这个代 数式代入另一个方程中 从而消去一个未知数 化二元一次方程 组为一元一次方程式 解这个一元一次方程 把求得的一次 方程的解代入方程中 求得另一个未知数值 组成方程组的解 这种解方程组的方法称为代入消元法 简称代入法 五 随堂练习随堂练习 1 已知x 3y 6 0 用含x的代数式表示y为 用含y的代数式表示x 为 2 教材随堂练习 六 六 小结 小结 1 今天我们学习了二元一次方程组的解法 你有什么体会 2 解二元一次方程组的思路是消元 把二元变为一元 3 解题步骤概括为三步即 变 代 解 4 方程组的解的表示方法 应用大括号把一对未知数的值连在 一起 表示同时成立 不要写成x y 5 由一个方程变形得到的一个含有一个未知数的代数式必须代 入另一个方程中去 否则会出现一个恒等式 七 作业布置作业布置 1 已知 x 1 是方程组 ax by 2 的解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论