




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学概念的发现教学模式与案例分析数学概念的发现教学模式与案例分析 数学概念是数学科学知识体系的重要基础之一 也是数学数学概念是数学科学知识体系的重要基础之一 也是数学 思维的一种形式 它是反映数学对象本质属性和特征的思维形思维的一种形式 它是反映数学对象本质属性和特征的思维形 式 数学概念的学习与数学知识的掌握 知识结构的形成 数式 数学概念的学习与数学知识的掌握 知识结构的形成 数 学能力的提高密切相关 因此 上好概念课对提高教学质量极学能力的提高密切相关 因此 上好概念课对提高教学质量极 其重要 在教学活动中怎样实施概念课的教学呢 以下结合教其重要 在教学活动中怎样实施概念课的教学呢 以下结合教 学实例介绍数学概念的一种教学方法学实例介绍数学概念的一种教学方法 发现式教学 发现式教学 一 概念的发现教学模式 一 概念的发现教学模式 概念的发现教学是鼓励学生借助归纳推理从实例中发现数概念的发现教学是鼓励学生借助归纳推理从实例中发现数 学概念的教学 其学习理论基础是概念形成 即通过对概念所学概念的教学 其学习理论基础是概念形成 即通过对概念所 反映的事物的不同例子中 让学生积极主动地去发现其本质属反映的事物的不同例子中 让学生积极主动地去发现其本质属 性 从而形成新概念 概念的发现教学模式一般可以概括出以性 从而形成新概念 概念的发现教学模式一般可以概括出以 下四阶段 辨别和分类 假设和解释 概括 验证和调整 下四阶段 辨别和分类 假设和解释 概括 验证和调整 第一阶段 辨别和分类第一阶段 辨别和分类 在这一阶段 教师呈现给学生的应该是一些要求学生对事在这一阶段 教师呈现给学生的应该是一些要求学生对事 物进行知觉辨别或分类的任务 这个时候 教师应更多地作为物进行知觉辨别或分类的任务 这个时候 教师应更多地作为 引导者 不要过多干涉学生感知事物的活动 更不要包办代替引导者 不要过多干涉学生感知事物的活动 更不要包办代替 而要为学生提供动手操作的机会 让学生充分地利用多种感 而要为学生提供动手操作的机会 让学生充分地利用多种感 觉器官参与活动 这样有利于学生全方位地感知概念 分析概觉器官参与活动 这样有利于学生全方位地感知概念 分析概 念的共同特征 念的共同特征 第二阶段 假设和解释第二阶段 假设和解释 在这一阶段 学生需要对他们分类的事物作出假设或解释在这一阶段 学生需要对他们分类的事物作出假设或解释 比如 为什么把这些事物归为一类 假定这类事物具有的共 比如 为什么把这些事物归为一类 假定这类事物具有的共 同特征是什么 这时教师应该扮演促进者的角色 通过提出一同特征是什么 这时教师应该扮演促进者的角色 通过提出一 些启发性问题 激发学生的思考 引导他们把假设和解释表达些启发性问题 激发学生的思考 引导他们把假设和解释表达 得更为清晰 得更为清晰 第三阶段 概括第三阶段 概括 在这一阶段 学生应该试着根据概念的属性对概念加以描在这一阶段 学生应该试着根据概念的属性对概念加以描 述 也就是找到那些正例才有而反例没有的属性 甚至进一述 也就是找到那些正例才有而反例没有的属性 甚至进一 步对概念下一个定义 不过 对这个概念的命名就不可能通过步对概念下一个定义 不过 对这个概念的命名就不可能通过 学生的独立探索能够发现 这时教师应该作为讲授者把传统上学生的独立探索能够发现 这时教师应该作为讲授者把传统上 我们给这个概念赋予的名称告诉学生 我们给这个概念赋予的名称告诉学生 第四阶段 验证和调整第四阶段 验证和调整 在这一阶段 学生将用其他一些例子 不是自己用来归纳在这一阶段 学生将用其他一些例子 不是自己用来归纳 出概念的那些例子 来检验自己关于概念的定义或描述是否正出概念的那些例子 来检验自己关于概念的定义或描述是否正 确 把已经知道的那些属于该概念的正例拿来检验是否符合自确 把已经知道的那些属于该概念的正例拿来检验是否符合自 己给出的概念的定义或描述 同时也把那些已经知道不属于该己给出的概念的定义或描述 同时也把那些已经知道不属于该 概念的反例拿来检验是否确实不符合自己给出的概念的定义或概念的反例拿来检验是否确实不符合自己给出的概念的定义或 描述 如果发现有不适合的情况 就需要对定义或描述做适当描述 如果发现有不适合的情况 就需要对定义或描述做适当 的修订 必要时 可能还要回到前三个阶段重新考虑 这阶段的修订 必要时 可能还要回到前三个阶段重新考虑 这阶段 教师作为裁判员 对学生的验证过程进行裁决和指导 教师作为裁判员 对学生的验证过程进行裁决和指导 总之 观察总之 观察 猜想猜想 操作操作 验证是进行试验的基本方法和验证是进行试验的基本方法和 步骤 在初中数学教学中 有许多方面 比如图形的变换 勾步骤 在初中数学教学中 有许多方面 比如图形的变换 勾 股定理的证明 多边形内角和的探索等 都是鼓励学生开展数股定理的证明 多边形内角和的探索等 都是鼓励学生开展数 学实验的好素材 学实验的好素材 二 案例分析 二 案例分析 函数函数 教学设计教学设计 这里可以用人教版八年级上册第十四章第二节这里可以用人教版八年级上册第十四章第二节 函数函数 的的 教学设计来说明概念的发现教学模式 第一节教学设计来说明概念的发现教学模式 第一节 变量变量 的教学的教学 中 教师提供了教材上的行程问题 票房收入 弹簧长度等五中 教师提供了教材上的行程问题 票房收入 弹簧长度等五 个问题 学生通过观察发现这些问题反映了不同事物的变化过个问题 学生通过观察发现这些问题反映了不同事物的变化过 程 在变化过程中 一些量的数值发生变化 一些量的数值始程 在变化过程中 一些量的数值发生变化 一些量的数值始 终不变 经教师提供常量和变量这两个术语后 学生对照他们终不变 经教师提供常量和变量这两个术语后 学生对照他们 见到的数据 不难理解常量和变量两个概念 本节课是在学生见到的数据 不难理解常量和变量两个概念 本节课是在学生 掌握了常量和变量的基础上利用发现教学模式学习掌握了常量和变量的基础上利用发现教学模式学习 函数函数 这这 一重要数学概念 一重要数学概念 1 1 观察实例与辨别实例的特征 观察实例与辨别实例的特征 教师继续用上节提供的五个实例让学生深入探究 让学生教师继续用上节提供的五个实例让学生深入探究 让学生 指出每个问题中哪些是常量 哪些是变量 观察同一个问题中指出每个问题中哪些是常量 哪些是变量 观察同一个问题中 的变量之间有什么联系 激发学生思考 例如问题 的变量之间有什么联系 激发学生思考 例如问题 1 1 中 让 中 让 学生填表观察两个变量 行驶时间学生填表观察两个变量 行驶时间 t t 和行驶里程和行驶里程 s s 的变化情况的变化情况 问题 问题 2 2 中 经过计算让学生发现售票数量 中 经过计算让学生发现售票数量 x x 与票房收入与票房收入 y y 之间的变化情况 之间的变化情况 2 2 假设与解释 假设与解释 通过教师引导性提问 学生需要发现所列表格中两个变量通过教师引导性提问 学生需要发现所列表格中两个变量 取值之间的关系 于是学生发现 在两组数据中 当其中一个取值之间的关系 于是学生发现 在两组数据中 当其中一个 变量取定一个值时 另一个变量随之确定一个值 这五个实例变量取定一个值时 另一个变量随之确定一个值 这五个实例 的两个变量都具有同样的特征 的两个变量都具有同样的特征 3 3 抽象和概括 抽象和概括 上述五个例子 学生要概括函数的定义是有困难的 这里教上述五个例子 学生要概括函数的定义是有困难的 这里教 师直接提供函数的定义 由于事先有五个实例的分析 学生对师直接提供函数的定义 由于事先有五个实例的分析 学生对 照实例能初步理解函数定义和与之相关的照实例能初步理解函数定义和与之相关的 x x 变量 自变量 和变量 自变量 和 y y 变量 自变量的函数 但这种理解是初步的 所以可以说变量 自变量的函数 但这种理解是初步的 所以可以说 定义性概念学习处于陈述性阶段 定义性概念学习处于陈述性阶段 4 4 验证和调整 验证和调整 教师为学生出示教材中教师为学生出示教材中 9696 页页 思考思考 的两个问题 的两个问题 1 1 心电图 心电图 2 2 我国人口数统计表 学生将用这两个例子来检验 我国人口数统计表 学生将用这两个例子来检验 自己关于函数的定义或描述是否正确 例如在心电图中 时间自己关于函数的定义或描述是否正确 例如在心电图中 时间 x x 是自变量 心脏电流是自变量 心脏电流 y y 是是 x x 的函数 人口数统计表中 年份的函数 人口数统计表中 年份 x x 是自变量 人口数是自变量 人口数 y y 是是 x x 的函数 教师将对学生检验过程进的函数 教师将对学生检验过程进 行指导 下一步教师将用变式练习让学生对函数的理解更加深行指导 下一步教师将用变式练习让学生对函数的理解更加深 刻 变式练习是把学习得的定义性概念运用于解决日常生活中刻 变式练习是把学习得的定义性概念运用于解决日常生活中 的问题 包括解决汽车油箱中的油量的问题 包括解决汽车油箱中的油量 y y 与行驶里程与行驶里程 x x 的关系 的关系 人均占有耕地面积人均占有耕地面积 y y 与这个村人数与这个村人数 n n 的关系等 在这些练习中的关系等 在这些练习中 学生必须应用学习得的函数定义 分析实例中的常量 变量 学生必须应用学习得的函数定义 分析实例中的常量 变量 自变量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2017工贸行业重点领域安全监管执法培训讲义
- 国家电网考试题库及答案
- 2024重庆市涪陵区李渡街道社区工作者招聘考试试题
- 2025年全省民政行业职业技能大赛(遗体整容师)备考试题库含答案
- 2025年专业技术人员公需科目培训考试试题及答案
- 2025事业单位考试公共基础知识测试题及答案
- 污水处理厂员工考试试题(带答案)
- 2025年抢救药品及器材相关考试试题及答案
- 2025年经济师考试中级农业科目试题及答案
- 2025年急救物品管理制度试题及答案范文
- 2025海南省老干部服务管理中心招聘事业编制人员6人(第1号)考试备考题库及答案解析
- 2025年内江市总工会公开招聘工会社会工作者(14人)笔试模拟试题及答案解析
- 2025云南辅警笔试题目及答案
- 2025四川内江市总工会招聘工会社会工作者14人笔试备考试题及答案解析
- 2025-2026学年湘教版(2024)初中数学八年级上册教学计划及进度表
- 2025至2030中国公安行业发展趋势分析与未来投资战略咨询研究报告
- 2025年三支扶陕西试题及答案
- 新生儿持续性肺动脉高压个案护理
- bbc国际音标教学课件
- GB/T 45763-2025精细陶瓷陶瓷薄板室温弯曲强度试验方法三点弯曲或四点弯曲法
- 2025年新修订《治安管理处罚法》
评论
0/150
提交评论