浅论初中数学概念教学方法_第1页
浅论初中数学概念教学方法_第2页
浅论初中数学概念教学方法_第3页
浅论初中数学概念教学方法_第4页
浅论初中数学概念教学方法_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浅论初中数学概念教学方法 数学概念是反映现实世界的空间形式和数量关系的本 质属性的思维形式 数学概念是数学知识的基础 是数学 教材结构的最基本的因素 是数学思想与方法的载体 正 确理解数学概念 是掌握数学基础知识的前提 学生如果 不能正确地理解数学中的各种概念 就不能很好地掌握各 种法则 公式 定理 也就不能应用所学知识去解决实际 问题 因此 抓好数学概念的教学 是提高数学教学质量 的关键 数学概念比较抽象 初中学生由于年龄 生活经 验和智力发展等方面的限制 要接受教材中的所有概念是 不容易的 在教学过程中 一些教师不注意结合学生心理 发展特点去分析事物的本质特征 只是照本宣科地提出概 念的正确定义 缺乏生动的讲解和形象的比喻 对某些概 念讲解不够透彻 使得一些学生对概念常常是一知半解 模糊不清 也就无法对概念正确理解 记忆和应用 下面 就如何做好数学概念的教学工作谈几点体会 一 利用生活实例引入概念 概念属于理性认识 它的形成依赖于感性认识 学生 的心理特点是容易理解和接受具体的感性认识 教学过程 中 各种形式的直观教学是提供丰富 正确的感性认识的 主要途径 所以在讲述新概念时 从引导学生观察和分析 有关具体实物人手 比较容易揭示概念的本质和特征 例 如 在讲解 梯形 的概念时 教师可结合学生的生活实 际 引入梯形的典型实例 如梯子 堤坝的横截面等 再 画出梯形的标准图形 让学生获得梯形的感性知识 再如 讲 数轴 的概念时 教师可模仿秤杆上用点表示物体的 重量 秤杆具有三个要素 度量的起点 度量的单位 明确的增减方向 这样以实物启发人们用直线上的点表 示数 从而引出了数轴的概念 这种形象的讲述符合认识 规律 学生容易理解 给学生留下的印象也比较深刻 二 注重概念的形成过程 许多数学概念都是从现实生活中抽象出来的 讲清它 们的来源 既会让学生感到不抽象 而且有利于形成生动 活泼的学习氛围 一般说来 概念的形成过程包括 引入 概念的必要性 对一些感性材料的认识 分析 抽象和概 括 注重概念形成过程 符合学生的认识规律 在教学过 程中 如果忽视概念的形成过程 把形成概念的生动过程 变为简单的 条文加例题 就不利于学生对概念的理解 因此 注重概念的形成过程 可以完整地 本质地 内在 地揭示概念的本质属性 使学生对理解概念具备思想基础 同时也能培养学生从具体到抽象的思维方法 例如 负数 概念的建立 展现知识的形成过程如下 让学生总结小 学学过的数 表示物体的个数用自然数 1 2 3 表示 一 个物体也没有 就用自然数 0 表示 测量和计算有时不能 得到整数的结果 这就用分数 观察两个温度计 零上 3 度 记作 3 零下 3 度 记作 3 这里出现了一种新 的数 负数 让学生说出所给问题的意义 让学生观 察所给问题有何特征 引导学生抽象概括正 负数的概 念 三 深入剖析 揭示概念的本质 数学概念是数学思维的基础 要使学生对数学概念有 透彻清晰的理解 教师首先要深入剖析概念的实质 帮助 学生弄清一个概念的内涵与外延 也就是从质和量两个方 面来明确概念所反映的对象 如 掌握垂线的概念包括三 个方面 了解引进垂线的背景 两条相交直线构成的四 个角中 有一个是直角时 其余三个也是直角 这反映了 概念的内涵 知道两条直线互相垂直是两条直线相交的 一个重要的特殊情形 这反映了概念的外延 会利用两 条直线互相垂直的定义进行推理 知道定义具有判定和性 质两方面的功能 另外 要让学生学会运用概念解决问题 加深对概念本质的理解 如 一般地 式子 a 0 叫做 二次根式 这是一个描述性的概念 式子 a 0 是一个整 体概念 其中 a 0 是必不可少的条件 又如 讲授函数概 念时 为了使学生更好地理解掌握函数概念 我们必须揭 示其本质特征 进行逐层剖析 存在某个变化过程 说明变量的存在性 在某个变化过程中有两个变 量 x 和 v 说明函数是研究两个变量之间的依存关系 对于 x 在某一范围内的每一个确定的值 说明变 量 x 的取值是有范围限制的 即允许值范围 v 有唯一 确定的值和它对应 说明有唯一确定的对应规律 由 以上剖析可知 函数概念的本质是对应关系 四 通过变 式 突出比较 巩固对概念的理解 巩固是概念教学的重要环节 心理学原理认为 概念 一旦获得 如不及时巩固 就会被遗忘 巩固概念 首先 应在初步形成概念后 引导学生正确复述 这里绝不是简 单地要求学生死记硬背 而是让学生在复述过程中把握概 念的重点 要点 本质特征 同时 应注重应用概念的变 式练习 恰当运用变式 能使思维不受消极定势的束缚 实现思维方向的灵活转换 使思维呈发散状态 如 有理 数 与 无理数 的概念教学中 可举出如 与 3 14159 为例 通过这样的训练 能有效地排除外在形式 的干扰 对 有理数 与 无理数 的理解更加深刻 最 后 巩固时还要通过适当的正反例子比较 把所教概念同 类似的 相关的概念比较 分清它们的异同点 并注意适 用范围 小心隐含 陷阱 帮助学生从中反省 以激起 对知识更为深刻的正面思考 使获得的概念更加精确 稳 定和易于迁移 五 注重应用 加深对概念的理解 培养学生的数学 能力 对数学概念的深刻理解 是提高学生解题能力的基础 反之 也只有通过解题 学生才能加深对概念的认识 才 能更完整 更深刻地理解和掌握概念的内涵和外延 课本 中直接运用概念解题的例子很多 教学中要充分利用 同 时 对学生在理解方面易出错误的概念 要设计一些有针 对性的题目 通过练习 讲评 使学生对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论