1.1.勾股定理.docx_第1页
1.1.勾股定理.docx_第2页
1.1.勾股定理.docx_第3页
1.1.勾股定理.docx_第4页
1.1.勾股定理.docx_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

八年级数学集体教案大保当初级中学八年级数学集体教案课题第一章 勾股定理1.探索勾股定理(1)主备人使用人审核人教学目 标(一)知识与技能用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步运用勾股定理进行简单的计算和实际运用(二)过程与方法1、让学生经历“观察猜想归纳验证”的数学思想,并体会数形结合和特殊到一般的思想方法2、进一步发展学生的说理和简单推理的意识及能力;进一步体会数学与现实生活的紧密联系(三)情感、态度与价值观在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化历史,激励学生发奋学习教学重 点了解勾股定理的由来并能用它解决一些简单问题。教学难 点勾股定理的发现。教学程 序集体备课内容个案补 充第一环节:导入新课、明确目标2002年世界数学家大会在我国北京召开,显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号今天我们就来一同探索勾股定理(板书课题)第二环节:预习反馈、点拨质疑预习反馈第三环节:分组合作、探究解疑1探究活动一内容:显示如下地板砖示意图,引导学生从面积角度观察图形: 问:你能发现各图中三个正方形的面积之间有何关系吗?归纳发现:结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积2探究活动二内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?(1)观察下面两幅图:(2)填表:A的面积(单位面积)B的面积(单位面积)C的面积(单位面积)左图右图(3)你是怎样得到正方形C的面积的?与同伴交流(学生可能会做出多种方法,教师应给予充分肯定) 图1 图2 图3(4)分析填表的数据,你发现了什么?归纳出:结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积第四环节:展示分享、点评升华议一议内容:(1)你能用直角三角形的边长,来表示上图中正方形的面积吗?(2)你能发现直角三角形三边长度之间存在什么关系吗?(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度2中发现的规律对这个三角形仍然成立吗?勾股定理:直角三角形两直角边的平方和等于斜边的平方如果用,分别表示直角三角形的两直角边和斜边,那么 数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名(在西方文献中又称为毕达哥拉斯定理)第五环节:当堂检测、全面达标随堂练习第六环节:课堂小结师生共同总结:1知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方如果用,分别表示直角三角形的两直角边和斜边,那么2方法:(1) 观察探索猜想验证归纳应用; (2)“割、补、拼、接”法.3思想:(1) 特殊一般特殊; (2) 数形结合思想第七环节:布置作业A:1、2、4 B:1、2 C 1、2教学反 思大保当初级中学八年级数学集体教案课题第一章 勾股定理1.探索勾股定理(2)主备人柳美玲、刘志飞使用人审核人教学目 标(一)知识与技能掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.(二)过程与方法经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.(三)情感、态度与价值观在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.教学重 点用面积法验证勾股定理,应用勾股定理解决简单的实际问题教学难 点教学程 序集体备课内容个案补 充第一环节:导入新课、明确目标(1)勾股定理的内容是什么?(2)上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.第二环节:预习反馈、点拨质疑预习反馈第三环节:分组合作、探究解疑活动1: 教师导入,小组拼图. 22 教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形. 活动2:层层设问,完成验证一.展示其中两个图形: 图1 图2在此基础上教师提问:(1)如图1你能表示大正方形的面积吗?能用两种方法吗?(学生先独立思考,再4人小组交流);(2)你能由此得到勾股定理吗?为什么?(在学生回答的基础上板书(a+b)2=4ab+c2.并得到)从而利用图1验证了勾股定理.活动3 : 自主探究,完成验证二.教师小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系整式运算的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?(学生先独立探究,再小组交流,最后请一个小组同学上台讲解验证方法二)第四环节:展示分享、点评升华1.议一议:观察下图,用数格子的方法判断图中三角形的三边长是否满足a2+b2=c2_b_a_a_c_b_c2.一个直角三角形的斜边为20cm,且两直角边长度比为3:4,求两直角边的长。例题:飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论