




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题18章复习课主备人刘俭审核人张少雄课型新授课备课时间2.7上课时间教学目标1.会用勾股定理解决简单问题。2.会用勾股定理的逆定理判定直角三角形。3.会用勾股定理解决综合问题和实际问题。重点回顾并思考勾股定理及逆定理难点勾股定理及逆定理在生活中的光泛应用。教学程序一、出示目标1.会用勾股定理解决简单问题。2.会用勾股定理的逆定理判定直角三角形。定理:3.会用勾股定理解决综合问题和实际问题。直角三角形的性质:勾股定理二知识结构图 应用:主要用于计算勾股定理 直角三角形的判别方法:若三角形的三边满足 则它是一个直角三角形.三、知识点回顾 1、 勾股定理的应用 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有:(1)已知直角三角形的两边求第三边 (2)已知直角三角形的一边与另两边的关系。求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题(4)勾股定理的直接作用是知道直角三角形任意两边的长度,求第三边的长这里一定要注意找准斜边、直角边;二要熟悉公式的变形:,勾股定理的探索与验证,一般采用“构造法”通过构造几何图形,并计算图形面积得出一个等式,从而得出或验证勾股定理2、如何判定一个三角形是直角三角形(1) 先确定最大边(如c)(2) 验证与是否具有相等关系(3) 若=,则ABC是以C为直角的直角三角形;若 则ABC不是直角三角形。3、三角形的三边分别为a、b、c,其中c为最大边,若,则三角形是直角三角形;若,则三角形是锐角三角形;若,则三角形是钝角三角形所以使用勾股定理的逆定理时首先要确定三角形的最大边4、勾股数 满足=的三个正整数,称为勾股数如(1)3,4,5; (2)5,12,13; (3)6,8,10;(4)8,15,17 (5)7,24,25 (6)9, 40, 41四、典型例题分析例1:如果一个直角三角形的两条边长分别是6cm和8cm,那么这个三角形的周长和面积分别是多少?分析: 这里知道了直角三角形的两条边的长度,应用勾股定理可求出第三条边的长度,再求周长但题中未指明已知的两条边是_还是_,因此要分两种情况讨论例2: 如图1911是一只圆柱形的封闭易拉罐,它的底面半径为4cm,高为15cm,问易拉罐内可放的搅拌棒(直线型)最长可以是多长? (例四) (例五)分析: 搅拌棒在易拉罐中的位置可以有多种情形,如图中的、,但它们都不是最长的,根据实际经验,当搅拌棒的一个端点在B点,另一个端点在A点时最长,此时可以把线段AB放在RtABC中,其中BC为底面直径例3:已知单位长度为“1”,画一条线段,使它的长为分析:是无理数,用以前的方法不易准确画出表示长为的线段,但由勾股定理可知,两直角边分别为_的直角三角形的斜边长为.例4:如图,在正方形ABCD中,E是BC的中点,F为CD上一点,且求证:AEF是直角三角形分析:要证AEF是直角三角形,由勾股定理的逆定理,只要证_即可例5 如图,在四边形ABCD中,C=90,AB=13,BC=4,CD=3,AD=12,求证:ADBD分析:可将直线的互相垂直问题转化成直角三角形的判定问题例6 已知:如图ABC中,AB=AC=10,BC=16,点D在BC上,DACA于A求:BD的长 分析:可设BD长为xcm,然后寻找含x的等式即可,由AB=AC=10知ABC为等腰三角形,可作高利用其“三线合一”的性质来帮助建立方程例7:一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所爬行的最短路线的长是_(分析:可以)分析:将点A与点B展开到同一平面内,由:“两点之间,线段最短。”再根据“勾股定理”求出最短路线。五、专题训练1、一个直角三角形,有两边长分别为6和8,下列说法中正确的是( )A、 第三边一定为10 B、三角形的周长为24 C、三角形的面积为24 D、第三边有可能为102、在RtABC中,C90,a,b,c分别为A,B,C所对的边,(1)已知c4,b3,求a;(2)若a:b=3:4,c=10cm,求a、b。3、如图,三个正方形中两个面积S169,S144,则另一个面积S为( )A. 50 B. 30 C. 25 D. 100.(一)直角三角形的判定1、下列各组数中,以a,b,c为边的三角形不是Rt的是() A、a=1.5,b=2, c=3B、a=7,b=24,c=25C、a=6, b=8, c=10D、a=3,b=4,c=52、 三角形的三边长为,则这个三角形是( ) A. 等边三角形 B. 钝角三角形 C. 直角三角形 D. 锐角三角形(二)勾股定理的应用1、如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆形水杯中,设筷子露在外面的长度为hcm,则h的取值范围是 2、如图,四边形ABCD中,AB=3cm,BC=4cm,CD=12cm,DA=13cm,且ABC=90,则四边形ABCD的面积是 cm2(三)展开图与折叠问题BCBACD1、一只蚂蚁从棱长为1的正方体纸箱的B点沿纸箱爬到D点,那么它所行的最短路线的长是_。2、如图,有一个直角三角形纸片,两直角边AC=6,BC=8,现将直角边AC沿直线AD折叠,使其落在斜边AB上,且与AE重合,则CD的长为 。题2图题1图3、如图,在矩形中,将矩形折叠,使点B与点D重合,落在处,若,则折痕AD的长为 。4、如图,CD是RtABC的斜边AB上的高,若AB17,AC15,求CD的长( )A、B、C、17D、7三、典型例题1、已知:如图,在中,于,求的长2、如图,已知:,求的长3、如图,中,求BC边上的高AD 4、某工厂的大门如图所示,其中四边形ABCD是长方形,上部是以AB为直径的半圆,已知AD=2.3米,AB=2米,现有一辆装满货物的卡车,高2.5米,宽1.6米,问这辆汽车能否通过大门?请说出你的理由.5、如图是一个三级台阶,它的每一级的长宽和高分别为20dm、 3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是_。6、远洋”号,“海天”号轮船同时离开港口, “远航”号以每小时15海里的速度向东北方向航行,“海天”号以一定的速度向西北方向航行,2小时后,两船相距50海里,求“海天”号的速度?六、补充本章注意事项勾股定理是平面几何中的重要定理,其应用极其广泛,在应用勾股定理时,要注意以下几点:一、要注意正确使用勾股定理例1 在RtABC中,B=Rt,a=1,求c。二、要注意定理存在的条件例2 在边长为整数的ABC中,ABAC,如果AC=4,BC=3,求AB的长。三、要注意原定理与逆定理的区别例3 如图1,在ABC中,AD是高,且,求证:ABC为直角三角形。四、要注意防止漏解例4 在RtABC中,a=3,b=4,求c。五、要注意正逆合用在解题中,我们常将勾股定理及其逆定理结合起来使用,一个是性质,一个是判定,真所谓珠联壁合。当然在具体运用时,到底是先用性质,还是先用判定,要视具体情况而言。证明 在ABC中,由AD是高有:例5 在ABC中,D为BC边上的点,已知AB=13,AD=12,AC=15,BD=5,那么DC=_。六、要注意创造条件应用例7 如图3,在ABC中,C=90,D是AB的中点,DEDE,DE、DF分别交AC、BC、于E、F,求证:分析 因为EF、AE、BF不是一个三解形的三边,所以要证明结论成立,必须作适当的辅助线,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年硼粉系列项目合作计划书
- Imepitoin-Standard-生命科学试剂-MCE
- IBI-322-生命科学试剂-MCE
- 2025年交通供电检测装备项目建议书
- 2025广西科技大学招聘附属医院(临床医学院)领导干部3人模拟试卷有答案详解
- 2025甘肃酒泉市肃北县人武部招聘2人模拟试卷及答案详解(网校专用)
- 小学健康安全培训反思课件
- 2025年山东省环保发展集团有限公司校园招聘(144人左右)模拟试卷带答案详解
- 2025年自动温度检定系统项目合作计划书
- 知识产权许可合同说明
- 车队充电服务协议书范本
- 猫咖设计案例解析与方案模板
- 腹腔镜手术并发症解析
- 服装款式图模板谭敏31课件
- GB/T 45860.2-2025光纤激光束焊机的验收试验第2部分:光纤输送机的移动机构
- 《模拟电子技术(第三版)》全套教学课件
- 医院药品不良反应培训
- 子宫破裂护理常规课件
- 镇痛类药物应用与管理规范
- (2025年)国家能源集团笔试试题(+答案)
- DB34∕T 4010-2021 水利工程外观质量评定规程
评论
0/150
提交评论