




免费预览已结束,剩余5页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数的概念函数的概念 教学设计教学设计 人教版 普通高中课程标准实验教科书数学 必修本 A 版 第一章 概述 函数的概念 的教学需要两课时 本节课是第一课时 是一节函数的概念课 如何 上好一节概念课 概念不是由老师讲出 而是让学生去发现 并归纳概括出概念呢 从而 让学生更好的理解概念 熟练的去应用概念解决问题 在本节课的教学中 我以学生作为活 动的主体 创设恰当的问题情境 引导学生积极思考 大胆探索 从而去发现问题 提出 问题和解决问题 注重培养他们的观察 分析和解决问题的能力 培养他们的逻辑思维能力 及抽象概括能力 运用新课标的理念 我从以下几个方面加以说明 教材内容分析 教学目标分析 教 法学法分析 教学过程分析 教学评价分析 教材内容分析教材内容分析 1 教材的地位及作用教材的地位及作用 函数的概念是人教版数学必修 第一章第二节的内容 它不仅对前面学习的集合作了 巩固和发展 而且是学好后继知识的基础和工具 本节的主要内容就是函数的概念和函数 的三个要素 学习了本小节后 为以后学习其他类型的函数打下扎实的基础 由于函数反 映出的数学思想渗透到数学的各个领域并且它在物理 化学及生物等其他领域也有广泛的应 用 因此 函数概念是中学数学最重要的基本概念之一 2 学情分析学情分析 在学生学习用集合与对应的语言刻画函数之前 学生已经会把函数看成变量之间的依 赖关系 且比较习惯的用解析式表示函数 但这是对函数很不全面的认识 由于函数的概 念比较抽象 学生思维不成熟 不严密 故而整个教学环节总是创设恰当的问题情境 引 导学生积极思考 培养他们的逻辑思维能力 教学目标分析教学目标分析 根据上述教材内容分析 并结合学生的学习心理和认知结构 我将教学目标分成三部分进 行说明 知识与技能 知识与技能 1 从集合与对应的观点出发 加深对函数概念的理解 2 理解函数的三要素 定义域 值域和对应法则 3 理解函数符号的含义 过程与方法 过程与方法 在丰富的实例中 通过关键词的强调和引导 使学生发现 概括出它们的共同特征 在 此基础上再用集合与对应的语言来刻画函数 体会对应关系在刻画函数概念中的作用 情感 态度与价值观 情感 态度与价值观 采用从实例中抽象概括出函数概念的方法 不仅为学生理解函数打下感性基础 而且注 重学生的抽象概括能力 启发学生运用函数模型表述 思考 解决现实世界中蕴涵的规律 逐渐形成善于提出问题的习惯 学会数学表达和交流 发展数学应用意识 教学重点教学重点 函数的概念及 y f x 的理解与深化 教学难点教学难点 函数的概念及函数符号 f x 的理解 教学关键教学关键 在集合与对应的基础上理解函数的概念 课型结构课型结构 新授课 教具准备教具准备 多媒体课件 教学学法分析教学学法分析 1 教法分析教法分析 充分利用多媒体辅助教学 着重于学生探索研究的启发式教学为主 变式教学为辅 及引导 探究 讲解 演练相结 合 在教学过程中 多一点情境和归纳 多一点探索和发现 多一点思考和回顾 通过不 同形式的自主学习 探究活动 丰富和改善教与学的方式 体验数学发现和创造的历程 发展创新意识和实践能力 2 学法分析学法分析 本节内容的学习要注意运动变化观和集合对应观两个观点下函数定义的对比研究 注意借 助熟悉的一次函数 二次函数 反比例函数加深对函数这一抽象概念的理解 要重视符号 f x 的学习 借助于具体函数来理解符号 y f x 的含义 由具体到抽象 克服由抽象函数的 数学符号带来的理解困难 从而提高理解和运用数学符号的能力 教学过程分析教学过程分析 根据本节课的特点 我分成以下几部分详细说明创设情境 引入新课 引导探求 形成知识 变式训练 巩固知识 讨论探究 深化知识 总结反思 提高认知 一 创设情境一 创设情境 引入课题引入课题 今天我们研究的内容是函数的概念 函数并不像我们前面学习的集合一样一无所知 而是 比较熟悉 所以我先找同学说说对函数的认识 问题问题 1 什么是函数 初中学过什么函数 试举例说明 什么是函数 初中学过什么函数 试举例说明 让学生尽可能用自己的语言表述初中学过的函数定义 并举出学过的函数的例子 函数传统定义 板书 变量观点 设在一个变化过程中有两个变量 x 与 y 如果对于 x 的每 一个值 y 都有唯一的值与它对应 那么就说 y 是 x 的函数 x 叫做自变量 指出用函 数可以描述变量之间的依赖关系 强调函数是描述客观世界变化规律的重要数学模型 设计意图设计意图 复习学生初中已学过一次函数 反比例函数和二次函数 函数的变量观点下 的定义 为后面学习集合对应观点下的函数定义铺路 又能让学生了解函数发展的过程 以学生熟悉的情境入手激活学生的原有知识 形成学生的 再创造 欲望 让学生在熟悉的 环境中发现新知识 使新知识和原知识形成联系 符合学生的认知规律 同时也体现了数 学的应用价值 问题问题 2 由上述定义你能判断 由上述定义你能判断 y 1 是否表示一个函数 是否表示一个函数 学生讨论 发表各自意见 有的同学认为不是 因为没有两个变量 有的同学认为是 理由是 它可以表示为 y 0 x 1 教师由此指出争论的焦点 其实是函数定义不完善的地方 这也正是我们今天研究函数定 义的必要性 新的定义在与原来的定义不相违背的基础上从更高的观点 将它完善与深化 设计意图设计意图 通过以上问题使学生知道仅用已有函数的概念不能解决问题 2 引发学生的 认知冲突 激发学生的 再创造欲望 让学生在熟悉的环境中发现新知识 使新知识和原 知识形成联系 既是对初中已学函数概念的进一步深入 又是为下一步用集合语言刻画函 数的本质做好伏笔 二 引导探求二 引导探求 形成知识形成知识 时间 t 的变化范围是数集 A t 0 t 26 高度 h 的变化范围是数集 B h 0 h 845 设计意图设计意图 启发学生观察 思考 讨论 尝试用集合与对应的语言描述变量之间的依赖 关系 在 t 的变化范围内 任给一个 t 按照给定的解析式 都有唯一的一个高度 h 与之相 对应 设计意图设计意图 引导学生看图 并启发 在 t 的变化范围内 任给一个 t 按照给定的图象 都有唯一的一个臭氧空洞面积 S 与之相对应 共同读表 然后用集合与对应的语言描述变量之间的依赖关系 问题问题 3 分析 归纳以上三个实例 它们有什么共同特点 分析 归纳以上三个实例 它们有什么共同特点 对于数集 A 中的每一个 x 按照某种对应关系 f 在数集 B 中都有唯一确定的 y 与它对应 记作 f A B 对于这个问题采用由学生分组讨论三个实例的共同特点然后归纳出函数的定义 并在全 班交流的形式 设计意图设计意图 在三个实例的教学中 重点在于引导学生体会函数概念中的对应关系 通过 实例 1 体会用解析式刻画变量之间的对应关系 关注 t 和 h 的范围 通过实例 2 体会用图 象刻画变量之间的对应关系 关注 t 和 S 的范围 通过实例 3 体会用表格刻画变量之间的 对应关系 为了更好地使学生尝试用集合与对应的语言进行描述 可以设置教学情境 通 过学生的观察 思考 讨论来归纳结论 体现了学生自主探究的学习方式 让他们通过实 践来进一步体验到在集合对应观下的函数内涵 也为学生解决数学问题提供了一种新的途 径和方法 问题问题 4 函数能否看做是两个集合之间的一种对应呢 如果能 怎样给函数重新下一个定 函数能否看做是两个集合之间的一种对应呢 如果能 怎样给函数重新下一个定 义呢 义呢 设 A B 是非空的数集 如果按照某种确定的对应关系 f 使对于集合 A 中的任意一个数 x 在数集 B 中都有唯一确定的 f x 和它对应 那么就称 f A B 为从集合 A 到集合 B 的一 个函数 function 记 y f x x A 自变量 x 的取值范围 A 叫做函数的定义域 domain 与 x 的值相对应的 y 值叫做函数值 函数值的集合叫做函数的值域 range 定义采取由学生回答 教师归纳总结的方法 给学生最大的发挥空间 这种从特殊到一 般 揭示数学通常的发现过程 给学生 数学创造 的体验 这种引出概念的方式自然而又 易于学生接受和形成概念 概念剖析 概念剖析 1 函数是一种特殊的对应 非空数集到非空数集的对应 2 函数的核心是对应法则 通常用记号 f 表示函数的对应法则 在不同的函数中 f 的具 体含义不一样 函数记号 y f x 表明 对于定义域 A 的任意一个 x 在 对应法则 f 的作用下 即在 B 中可得唯一的 y 当 x 在定义域中取一个确定的 a 对应的函数值即为 f a 集合 B 中 并非所有的元素在定义域 A 中都有元素和它对应 3 函数符号 y f x 的说明 1 y f x 即为 y 是 x 的函数 的符号表示 2 y f x 不一定能用解析式表示 3 f x 与 f a 是不同的 通常 f a 表示函数 f x 当 x a 时的函数 函数 y f x 是学生学习的难点 这是一个抽象的数学符号 教学时首先要强调符号 y f x 为 y 是 x 的函数 这句话的数学表示 它仅仅是数学符号 而不是表示 y 等于 f 与 x 的乘 积 在有些问题中 对应关系 f 可用一个解析式表示 但在不少问题中 对应关系 f 不便 用或不可能用解析式表示 而用其他方式 如图象 列表 来表示 所以在此向学生明确 指出 y f x 不一定就是解析式 函数的表示方式除了解析式外 还有其它表示方法 如 实例 2 的图象法 实例 3 的列表法 三 变式训练三 变式训练 巩固知识巩固知识 下列图象中不能作为函数的图象的是 设计意图设计意图 启发并引导学生思考 讨论 交流 掌握函数的要点 四 讨论探究四 讨论探究 深化知识深化知识 集合 A A R 到集合 B B R 的对应 f A B 使得集合 B 中的元素 与集合 A 中的元素 x 对应 如何表示这个函数 定义域和值域各是什 么 函数 呢 函数 呢 教师演示动画 用 几何画板 显示这三种函数的动态图象 启发学生观察 分析 并请 同学们思考之后填写下表 设计意图设计意图 用函数的定义去解释学过的一次函数 反比例函数 二次函数 使得对函数 的描述性定义上升到集合与对应语言刻画的定义 同时画出函数的图象 让学生进一步体 会 数 与 形 结合在理解函数中的作用 更好地帮助理解函数的三个要素 从而加强学生 对函数概念的理解 进一步挖掘函数概念中集合与函数的联系 明确定义域 值域和对应 关系是决定函数的三要素 这是一个整体 以此更好地培养学生深层次思考问题的习惯 五 巩固练习五 巩固练习 设计意图设计意图 通过巩固练习 强化概念 从正反两个方面抓住函数定义中的关键词 任意 都 唯一 让学生对函数概念及符号 y f x 深刻理解 既考虑了数学思维的严谨性 也 体现了数学知识的应用性 六 归纳小结六 归纳小结 你对 函数是描述变量之间的依赖关系的重要的数学模型 这句话有什么体会 构成函数的 要素有哪些 你能举出生活中的一些函数的例子吗 设计意图设计意图 启发学生对本节课学习内容进行总结 提醒学生重视研究问题的方法和过程 学生通过对这些问题的回答 初步理解函数的一般概念 七 作业七 作业 举出生活中函数的例子 2 个 并用集合与对应的语言来描述函数 同时说出函数的定义 域 值域和对应关系 八 板书设计八 板书设计 教学流程图教学流程图 知识结构图知识结构图 教学评价分析教学评价分析 为了使学生了解函数概念产生的背景 丰富函数的感性认识 获得认识客观世界的体 验 本课采用 突出主题 螺旋上升 反复应用 的方式 以实际问题为主线 在不同的场 合考察问题的不同侧面 由浅入深 本课在教学时采用问题探究式的教学方法进行教学 逐层深入 这样使学生对函数概念的理解也逐层深入 从而准确理解函数的概念 函数引 入中的三个问题 既与初中时学习函数内容相联系 又蕴含了函数的三种表示方法 列表法 解析法 图象法 这样起到了承上启下的作用 这三个实际问
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年虚拟现实技术在职业教育课程中的教学设计研究报告001
- 2025年医院电子病历系统在医疗大数据中的应用与优化报告
- 2025年医院电子病历系统优化构建医疗大数据分析平台报告
- 终身学习视角下2025年成人教育体系构建与平台运营的师资培训策略报告
- 2025年医药流通行业供应链优化与成本控制政策研究实践报告
- 2025年医药流通行业供应链优化与成本控制案例分析报告
- 保安证考试题及答案
- 安全员c证试题及答案
- 安全试题及答案和解析
- 零售私域流量运营的线上线下促销活动策划报告
- 2024-2025学年江苏省扬州市江都区高一上学期期中考试英语试题(解析版)
- 音乐欣赏:贝多芬第九交响曲音乐课教案
- 2025国家开放大学《人文英语1》综合测试形考任务答案
- 2024北京海淀区三年级(下)期末英语试题及答案
- 23G409先张法预应力混凝土管桩
- CJJ-T 34-2022 城镇供热管网设计标准
- 部编版语文二年级下册教案及教学反思(全册)
- 《高危儿童保健服务指南(试行)》介绍
- 肠道水疗课件
- 机动车排放定期检验规范(HJ 1237-2021)_(高清-最新版)
- 校核计算2D1290220对称平衡式无油润滑压缩机
评论
0/150
提交评论