




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本科毕业设计外文文献及译文文献、资料题目:The Design and Use of 3Dof Manipulatoras a Platform for Education in Mechatronics文献、资料来源: Technology of us文献、资料发表(出版)日期:2013.2院 (部):机电工程学院专 业:机械工程及自动化班 级:机械xxx姓 名:xxx学 号: xxxx指导教师: xxxx翻译日期: 2015.03.10外文文献: The Design and Use of 3DOF Manipulator Abstract This article deals with the manipulator applied as an educational platformin mechatronics. All important parts of the design procedure are presented,including mechanical construction, electronics, control and safety management,with the use of additional sensors. The visual tracking of the end effector as anexample of the practical task is also described.1 IntroductionCurrently, the use of different kinds of manipulators has expanded to various industries,where they have increasingly replaced humans. For education in mechatronicsit is therefore desirable to have an educational platform which could showproblems of the design and use of such manipulators 1, 2, 3.This educational platform should be composed of commercially available components(COTS), should ensure modularity and total openness with the possibilityof placing additional sensors. Such a teaching tool would be suitable for teachingthe kinematics and dynamics of manipulators as well as for the classical and advancedcontrol algorithms 4 which use the identified model of the plant. Theeducational platform should be capable of high dynamics movements, in order toshow the influence of dynamic motion and gravitational forces.Today the most widespread educational tool is Lego Mindstorm 5. Due to thelarge clearances of Lego parts, it was not possible to achieve very precise anddynamic movements at the same time. Often used as an actuator for smalleducational manipulators, servo drives are commercially available 6. Their usesimplifies the design itself and consequently control of the manipulator. The disadvantageis, however, relatively little dynamic movement. Large and self-lockingthese actuators also present a simple way to demonstrate the influence of gravity.For the design of an educational model it was used enough to use dimensionedDC motors geared to be sluggish. The design should be based on the kinematicand dynamic model of the manipulator in Simmechanics 7, 8.878 D. Klimes et al.2 Mechanical DesignThe three DOF (degrees of freedom) device of the RRR type has been chosen as arepresentative of a manipulator commonly used in the robotic industry. The bodyconsists of four parts, connected by rotary joints into an open chain mechanismfinished by an end effector. The aluminum frame provides both a rigid andsufficiently light construction. All three rotary joints are driven by direct currentmotors with worm gearboxes. Figure 1 shows a CAD model of the device.Fig. 1 The manipulator CAD modelThe joint a.) controls rotation of the whole device in 320 range around itsaxis perpendicular to the base g.). The joint b.) moves arms e.) and f.) in a rangeof 270 and the last joint c.) ensures rotary movement of arm f.) in a range of290. The mechanical design of joints a.) and b.) is shown in the figures below indetail. Fig. 2 Left detail of the joint b.), right detail of the joint a.)The Design and Use of 3DOF Manipulator as a Platform for Education 8793 ElectronicsThe basic control hardware is the MF624 input/output card which is commonlyused for education in mechatronics. This card generates and processes the signalsused to control the manipulator. Because the designed manipulator can achievevery dynamic movements, it is necessary for educational purposes to ensure safeoperation. For movement of the manipulator in the area of the work it has protectiveelectronics that evaluate the current state of the manipulator together withlimit switches, all on a hardware level. No overrun of allowable torque is providedby sensing the current (LEM), where the current value is evaluated in the software.Everything is integrated into the library usable in Simulink.The power electronics consist of three full H-bridges, which are connected toDC motors. The complete diagram is shown in Fig. 3.Fig. 3 The complete diagram of electronics4 Control MethodsThe first and simplest method for manipulator control was to design a separatePID regulator for each drive. Tuning of these PID regulators was quite easy due tothe powerful drives used.Second method was feedforward control. For this type of regulator an inversedynamic model of the manipulator was required 9. Some parameters of the dynamicmodel, for example dimensions, masses and inertia matrices of parts, werefound out from constructing a model in SolidWorks software. Other parameters,like for example friction coefficients, were found out experimentally.In Fig.4 it is obvious, that the manipulator control is based on feedforward, andreaches excellent results comparable with a well tuned PID regulator.880 D. Klimes et al.Fig. 4 Time progress of swing using PID reg. a feedforward reg.5 Practical Use of Manipulator with Redundant SensorsFor educational use the platform is supplemented by further sensors, such as accelerometers.The manipulator platform is also complemented by a vision system (aproduct of National Instruments) which is commonly used in the industry as wellas in education 10.5.1 Use of Redundant Accelerometer for Sensing RotationAn important task is finding the absolute rotary position of the actuator (outputfrom transmission). If the reducing gear ratio is too large, it is simply not possibleto use an index signal from the encoder (which is located on the motor shaft).Fig. 5 Location of the accelerometer, which is used for sensing rotation (on the left). Timeprogress rotary position of second actuator, which is obtained from the encoder or the accelerometer(on the right).The Design and Use of 3DOF Manipulator as a Platform for Education 881When the manipulator is starting, there must be an initialization sequence executedusing signals from the index switches (for finding the absolute rotary pos.of the actuator).An alternative method is to use a signal from the accelerometer at the timewhen the manipulator is not moving (at the start of using the manipulator).A comparison of the rotary position of the actuator obtained from an “absolute”accelerometer and a “relative” encoder (which uses an index switch) is shown infig. 5. The accelerometer was placed on the axes of the second actuator, so that itonly sensed the acceleration of gravity.5.2 Use of Vision System for TrackingUsing smart cameras NI1742 created a complex mechatronic system that performsthe monitoring and controlling of the position of the end effector in the y and zaxes. Inspection for image processing and evaluation is created in Vision BuilderAI (from National Instruments), which is easy to use and suitable for demonstratingthe commonly used methods of image processing.A simple algorithm evaluates the position defined by the marks, which islocated near the end effector. Due to relatively slow imaging, use is restrictedto rather slower movements of the manipulator (for educational purposes it issufficient).Fig. 6 Output of inspection in VBAI (on the left). Time progress of position of the endeffector in axes y, z (on the right).6 ConclusionsThis article deals with the design and use of a typical mechatronic system, whichis a 3DOF manipulator. The final educational platform is easy to use for the differentcontrol methods 11, 12.882 D. Klimes et al.The platform is designed so that it is possible to make highly dynamic movements.It can be further extended and modified according to the requirementsof the target application. For application control and processing of the signal aMatlab-Simulink was used, communicating with the vision system from NationalInstruments.Acknowledgments. This work was supported by the BUT project FSI-J-12-1808 Modellingand control of high speed and precision manipulators.References1 Zezula, P., Vlachy, D., Grepl, R.: Simulation modeling, optimalization and stabilisationof biped robot, In: Recent Advances in Mechatronics, Int. Conf. on Mechatronics,Warsaw, POLAND (2007), doi 10.1007/978-3-540-73956-2_25,WOS:0002510177000252 Bodnicki, M., Sklewski, M.: Design of Small-Outline Robot Simulator of Gait ofan Amphibian. In: Recent Advances in Mechatronics, pp. 7781 (2007)3 Wierciak, J., Jasiska-Choromaska, D., Szykiedans, K.: Orthotic Robot as a MechatronicSystem. In: Mechatronics. Recent Technological and Scientific Advances,pp. 579588 (2011)4 Krejsa, J., Vechet, S., Hrbacek, J., Schreiber, P.: High Level Software Architecturefor Autonomous Mobile Robot. In: Recent Advances in Mechatronics, pp. 185190(2008-2009), WOS: 0002770769000325 Galvan, S., Botturi, D., Castellani, A., Fiorini, P.: Innovative Robotics Teaching UsingLego Sets. In: IEEE Int. Conf. Robotics and Automation (2006)6 Cocota Jr., J.A.N., Fujita, H.S., da Silva, I.J.: A Low-cost Robot Manipulator forEducation. In: Technologies Applied to Electronics Teaching (TAEE), pp. 164169(2012)7 Grepl, R.: Simulation of unilateral constraint in MBS software SimMechanics. In:Recent Advances in Mechatronics, International Conference on Mechatronics, Warsaw,POLAND (2007), doi 10.1007/978-3-540-73956-2_63, WOS:0002510177000638 Grepl, R., Vlach, R., Krejci, P.: Modelling of unilateral constraints for virtual prototypingin SimMechanics. In: IEEE International Conference on Mechatronics, Kumamoto,Japan (2007), WOS: 0002542882000239 Grepl, R.: Extended kinematics for control of quadruped robot. In: Recent Advancesin Mechatronics, International Conference on Mechatronics, Warsaw, Poland (2007),doi 10.1007/978-3-540-73956-2_26, WOS:00025101770002610 Krejci, P.: Bradac,M., Using LabVIEW for Developing of Mechatronic System ControlUnit. In: Mechatronics: Recent Technological and Scientific advances, 9th Int.Conference on Mechatronics, Warsaw, Poland (2011), WOS:00030967060003811 Krejsa, J., Vechet, S.: Mobile Robot Motion Planner Via Neural Network. In: EngineeringMechanics 2011, 327-330 (2011), WOS: 00031349270007512 Vechet, S.: The Rule Based Path Planner for Autonomous Mobile Robot. In: Mendel摘要。本文论述了机械手的应用作为一个教育平台在机电一体化。给出了设计过程的重要组成部分,包括机械,电子,控制和安全管理,与额外的传感器的使用。最终的视觉跟踪作为一个的实际任务的例子也被描述。1引言目前,不同种类的机器人的应用已扩展到各个行业,他们越来越多地取代人类。对于教育机电一体化因此需要有一个教育平台,可以显示并使用这种机器人的设计问题。这个教育平台应包括商业上可用的组件(COTS),应确保模块化和完全开放的可能性放置额外的传感器。这样的教学工具将适合教学机械手的运动学和动力学以及经典的和先进的控制算法 4 利用识别模型的植物。的教育平台应具有高动态运动,以动态显示运动和引力的影响。今天最广泛的教育工具是乐高Mindstorm 5 。由于对乐高零件的大间隙,这是不可能实现非常精确的和同时动态运动。经常被用来作为一个致动器的小型教育机器人,伺服驱动系统是市售的 6 。他们的使用简化了设计本身,从而控制机械手。缺点是,然而,相对较小的动态运动。大和自锁这些执行机构也提出一个简单的方法来证明重力的影响。为一种教育模式是足够使用的尺寸设计直流电机齿轮是呆滞。设计应基于运动学而在SimMechanics机械动态模型 7 , 8 。878四klimes等人。2机械设计三DOF(自由度)的RRR型装置已被选为一个常用的机器人机械手的代表。身体由四部分组成,通过旋转接头连接到一个开链机构由四部分组成,通过旋转接头连接到一个开链机构由端部执行器完成。铝框架提供了一个刚性和足够轻的结构。所有三个旋转关节均采用直流驱动蜗杆齿轮箱电机。图1显示装置的CAD模型。图1机械手的CAD模型接头A)320范围内围绕其整个装置控制旋转根据G)垂直轴。接头B)移动臂E)和F)的范围内270和最后一节c)确保臂F.旋转运动)的范围内290。关节的机械设计)和B)显示在下面的数字详细的。的接头B)左细节图2,的联合对细节)设计和使用自由度机械手作为一个教育平台8793电子基本的控制硬件是mf624输入/输出卡通常是机电一体化教育用。这张卡产生和处理的信号用于控制机械手。由于设计的机械手可以实现非常动态的运动,它给教育的目的是确保安全的必要操作。对机械手在工作区具有保护运动电子,评价操作的当前状态一起限位开关,在硬件水平。没有提供超出许用扭矩通过感应电流(LEM),在电流值在软件评价。一切都是集成到图书馆使用Simulink。电力电子技术包括三个完整的H桥,这是连接到直流电机。完成图如图3所示。图3电子完成图4控制方法机械手控制的第一和最简单的方法是设计一个单独的每个驱动器的PID调节器。这些PID调节器调整很容易强大的驱动器。第二方法是前馈控制。这种类型的调节器的逆机械手的动力学模型是必需的 9 的动态参数模型,例如尺寸,质量和惯性矩阵的部分,是SolidWorks软件构建模型的发现。其他参数,例如,摩擦系数,找出了实验。图很明显,这是基于前馈控制的机械手,和达到优良的结果,一个良好的调整PID调节器的比较。880四klimes等人。采用PID调节摆动时间进度图4。前馈调节。具有冗余传感器的机械手5的实际使用用MATLAB仿真,从国家视觉系统通信仪器。具有冗余传感器的机械手5的实际使用用于教育的平台,辅以其它传感器,如加速度计。机械手平台还辅以视觉系统(一美国国家仪器公司产品)是常用的工业和作为教育5.1使用冗余加速度计感测旋转一个重要的任务是找到致动器的绝对旋转位置(输出从传输)。如果减速齿轮比太大,根本不可能使用来自编码器的索引信号(位于电机轴)。图5加速度计的位置,这是用于感测旋转(左)。时间第二致动器的旋转位置的进步,这是从编码器或加速度计获得的(右)。设计和使用自由度机械手作为一个教育平台881当机器人开始,必须有一个初始化的顺序执行从指标的采用开关信号(找到的绝对旋转位置该致动器)。另一种方法是使用从加速度计的信号在时间当机器人不动(在使用机械手开始)。比较旋转致动器位置从“绝对”加速度计和一个“相对”的编码器(使用索引显示开关)图5。加速度计被放置在第二驱动轴,所以它只测重力加速度。5.2使用跟踪的视觉系统使用智能相机ni1742创造了一个复杂的机电一体化系统执行监测和在Y和Z末端执行器的位置控制轴。图像处理与评价检测是视觉生成器创建AI(美国国家仪器公司),这是很容易使用和适合演示常用的图像处理方法。一个简单的算法计算的标记确定的位置,这是位于附近的端部执行器。由于相对缓慢的成像,使用受到限制而慢动作的机械手(用于教育目的是足够的)。图6输出检
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025湖州安吉县城市建设投资集团有限公司下属子集团招聘11人模拟试卷完整参考答案详解
- 2025年福建省厦门老年大学招聘1人模拟试卷及答案详解(考点梳理)
- 模拟计算机试题及答案
- 企业档案资料管理归档流程工具
- 2025河南新乡市牧野区世青学校招聘模拟试卷及答案详解(名师系列)
- 2025年甘肃省兰州大学第一医院招聘41人(第三批)考前自测高频考点模拟试题及一套答案详解
- 2025福建漳州市云霄立人学校招聘中学教师考前自测高频考点模拟试题及答案详解(新)
- 2025内蒙古赤峰市元宝山区事业单位通过“绿色通道”引进高层次人才10人考前自测高频考点模拟试题及答案详解(全优)
- 求计算机基础试题及答案
- 2025广东深圳市优才人力资源有限公司招聘编外聘用人员拟聘人员模拟试卷含答案详解
- 音乐小动物回家课件20
- 中国桥梁发展史简介
- 日立冷水机组操作维护课件
- 审计案例第6章筹资与投资循环审计案例
- 神经介入治疗(DSA)及围手术期概述精品PPT课件
- 丙烯酸树脂安全技术说明书
- 焊接工艺评定报告完整版
- 50MW光伏项目工程清单报价
- 儿童能力评估量表PEDI拍迪
- 柴油发电机组机房设计手册_图文
- 雨、污水管道工程施工方案
评论
0/150
提交评论