Numerical Simulation and Analysis for Metal Cutting Processes Based on FEM and SPH.pdf_第1页
Numerical Simulation and Analysis for Metal Cutting Processes Based on FEM and SPH.pdf_第2页
Numerical Simulation and Analysis for Metal Cutting Processes Based on FEM and SPH.pdf_第3页
Numerical Simulation and Analysis for Metal Cutting Processes Based on FEM and SPH.pdf_第4页
全文预览已结束

Numerical Simulation and Analysis for Metal Cutting Processes Based on FEM and SPH.pdf.pdf 免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

NumericalSimulationandAnalysisforMetalCuttingProcessesBasedonFEMandSPH*AbstractByusingthecouplingmethodofFEMandSPH,constitutivebehaviorofmaterialinthemetalcuttingprocesswassimulatedandcuttingmechanismswereanalyzed.Thesimulationresultsshowthatthecuttingprocessisaplasticdeformationprocessinwhichcuttinglayermaterialproducesshearingslipduetotheextrusionofcuttingtool;theextrusionandfrictionfromcuttingedgeresultincoldplasticdeformationofmaterialinformedsurfacelayer,andformresidualstress;thecuttingforceincreasesrapidlyandthendecreases,eventuallyvariesinacertainrange;themaximaleffectivestressvariesatacertaindistancetothecuttingedgeinstablecuttingstage.Keywords:metalcutting;numericalsimulation;finiteelementmethod;SPHmethodI.INTRODUCTIONMetalcuttingprocessisacomplexmachiningtechnology.Itnotonlyrelatestoelasticity,plasticityandfracturemechanicsbutalsoinvolvestribologyandthermodynamics.Cuttingqualityisinfluencedbymanyfactors,suchastheshapeoftool,cuttingparameters,cuttingheat,cutting-toolwearandsoon1.Itisverydifferenttoquantificationallyanalyzeandresearchcuttingmechanismbyanalyticmethod.Itwastesman-hourandincreasesproductioncostsbytrialanderrormethod.Asanewresearchmethodformetalcuttingmechanism,computersimulationmethodisconvenientandefficient.Amongthem,finiteelementmethodismostwidelyusedinthesimulationofmetalcutting,andhasgotsomesignificantachievements2,3.Finiteelementmethodisameshmethod.Separationcriterionandfracturecriterionofchiphavetobeartificiallysetinthesimulationofmetalcuttingprocess,orthemeshesinthecuttingdeformationareawillbedistorted.Itisnotexactlyinagreementwithactualconditions.Thedevelopmentofmeshlessmethodprovidesaneffectivesolutionfortheproblem.Smoothparticlehydrodynamics(SPH)isakindofmaturemeshlessmethod.SimulationmodelisbuiltwithdiscreteparticlesinSPH,sobigdeformationinmetalcuttingprocesscanbeeffectivelysolved4-6.Inthesimulationofmechanicaldeformationofcontinuummedium,FEMismoreefficientthanSPH,butitisinferiortoSPHinthesimulationrelatestobigdeformationanddiscontinuousmedium.SothepapersimulatesmetalcuttingprocessbythecouplingmethodofFEMandSPHbasedonLS-DYNAsoftware.Itcomplementstheshortcomingsofsinglemethod.II.BASICPRINCIPLESOFTHESPHMETHODInSPH,simulationmodelisbuiltwithdiscreteparticles.Themassofparticleisfixedinitscoordinatesystem.ThereforeSPHmethodissimilartoLagrangemethod.Itsbasicequationsarealsoenergyconservationequationandconstructiveequationofsolidmaterial.PhysicalflowfieldinSPHisdescribedwithasetofflowingparticleswhichhasacertainvelocity.Eachparticleisaninterpolationpointwithcharacteristicsofflowfield.Thewholesolutioncanbegotbytheinterpolationfunctionoftheseparticles7,8.ThebasisofSPHisinterpolationprinciple9.Anymacrovariable(suchasdensity,press,temperatureetc)canbegotbyintegralinterpolationofasetofdisorderedparticles.Interactionsofparticlesareexpressedbyinterpolationfunction.Approximatefunctionofparticlesis,(1)=yh,yxWyfxfh)d()()(whereWisthekernelfunction(interpolationkernel),itisexpressedbelow:)()(1)(xxhh,xWd=,(2)wheredisthespacedimension,histhesmoothinglength.Assistantfunctionis+=2021)2(2501750511)(332uuu.uu.u.Cu,(3)whereCisanormalizationconstant.Thesmoothinglengthhisanimportantinfluencefactorofcomputationefficiencyandprecision.Inordertoavoidnegativeinfluenceduetomaterialcompressionandexpansion,varyingsmoothinglengthisproposedbyW.Benz.Smoothinglengthhdynamicallyvarieswiththevariationoftimeandspace.Itincreaseswiththeincreaseofdistancebetweenparticles.Itdecreaseswiththedecreaseofdistancebetweenparticles.ItsvariationrangeisHMINh0hHMAXh0,(4)whereh0istheinitialsmoothinglength.InfluencerangeofSPHparticleisasphericalregion,whoseradiusish.Ineverytimestep,itmustbeknownthatwhichparticlesareintheregion.Thereforesearchmustbeimplemented.BucketclassificationmethodofcontactsearchingalgorithmisusedforthesearchinSPH.AsshowninFig.1,firstly,thewholeregionisdividedintosomesub-regions,andthentheregionofeachparticleandits*ThisworkissupportedbythescientificresearchkeyprojectfundoftheMinistryofEducationofChina#20060145017SPHparticlesneighborregionsaresearched.Byusingthesearchingmethod,III.MODELINGANDcomputationisgreatlyreduced.SIMULATIONA.CouplingmareaofworkpieceisparticlesandLagrangemeshes.ItsleftpartisSPHparticles.odelofFEMandSPHInthispaper,bigdeformationmodeledwithSPHparticles,andsmalldeformationareaofworkpieceandcuttingtoolaremodeledwithLagrangemeshes.Fig.2showsthecouplingschematicillustrationofSPHItsrightpartisLagrangemeshes.SPHparticlesandLagrangemeshesarecoupledbyusingnode-surfacecontacttypeinLS-DYNA.Failurecriterionofcouplingcontact10is121snmmfffails,failn,+ff,(5)wherefn,fs,fn,fai,fs,failarethenormalstress,shearstress,lissimpaterialis45steel.Materialmodelisnormalfailurestressandshearfailurestress.m1,m2areexponentsofnormalstressandshearstress,respectively.Inordertoreducecomputingtime,simulationmodelified,asshowninFig.3.Workpieceisacuboidof6mm(length)4mm(height)0.2mm(width).Thesizeoffiniteelementmeshis0.1mm.CuttingdeformationareaismodeledwithSPHparticlesof0.33mm(radius).Toolrakeangle0is10andreliefangle0is6.B.MaterialmodelWorkpiecempiecewiselinearisotropicplasticitywithanarbitrarystressversusstraincurve.Itissuitableforsteels.StrainrateisaccountedforusingtheCowper-Symondsmodel.Therelationbetweenstrainrateandyieldstress10is()()PeffnP1YfC+=01,(6)wheristhestrainrate,CandParethestrainrateparameters,T5).Itshardnessandstrene0istheinitialyieldstressand)(peffnfisthehardeningfunctionwitheffectiveplasticstrain.Toolmaterialishardalloy(Ygtharemuchhigherthanworkpiece.Itisconsideredaselasticbody.Table1listssomematerialcharacteristicsofcuttingtoolandworkpiece,where16arecorrespondingyieldstressvaluestoeffectiveplasticstrainvalues16.TABLEIMATERIALCHARACTERISTICSOFCUTTINGTOOLANDWORKPIECEUNITSYSTEMS:kg-mm-ms123456Elasticratio(E)PoissonratioDensity()Strainrateparameters(C)Strainrateparameters(P)1234560.360.380.420.500.560.60workpiece2000.307.810-64050.0150.0250.050.0750.10.15Cuttingtool6000.151.310-5C.BoundaryconditionsCuttingtoolmovesalongthenegativedirectionofthex-axis,thereforey,ztranslationsandallrotationsareconstrained.Alltranslationsandrotationsofthebottomoffiniteelementmodelareconstrained.ForSPHpart,symmetricplanesmustbeestablishedbyvirtualparticles.Theseparticlesareactuallymirrorparticlesofsolidparticlesnearbytheboundaryof2h0(h0isinitialsmoothinglength),asshowninFig.4.Physicalquantitiesofvirtualparticlesandsolidparticlesaresymmetricaboutthefixedboundaryplane.Thereforevirtualparticlescanproduceconstrainttosolidparticles.ItmakesthevelocityofsolidparticleskeepintheFig.33DsimulationmodelofmetalcuttinghFiniteelementmeshFig.1BucketclassificationandlocalsearchFig.2CouplingschematicillustrationofSPHparticlesandLagrangemeshes.valueofzero,andsolidparticlescannotpenetrateboundary.IV.ANALYSISOFSIMULATIONRESULTSA.ChipformationInthispaper,theprocessesofcuttingdeformationandchipformationof45steelaresimulated.Cuttingvelocityvsis10m/s.Cuttingdepthapis0.5mm.FromFig.5(a)itcanbeseenthatthereexistsbiggishcontactstressatthecontactzonebetweentooledgeandcuttinglayermaterial.Itishighupto658.6MPa.Thevalueishigherthanyieldstrengthof45steel.Thereforethematerialatthecontactzoneproducesirreversibledeformation;thematerialofotherzonesisstillinelasticstate.Withthecontinuousmovingoftool,thecontactareabetweentooledgeandcuttinglayerincreasesgradually.Thecuttinglayermaterialhappenstopileupontherakeface.Innerstressofthematerialincreasesgradually.AsshowninFig.5(b),theeffectivestressinprimarydeformationzoneismuchhigherthanyieldstrength.Thereforethematerialinprimarydeformationzoneisinplasticstate.Undertheextrusionofcuttingtoolandsubsequentflowingmaterial,thematerialinplasticstatemovesupwardalongrakeface.Thematerialformschipafterflowingoutprimarydeformationzone,asshowninFig.5(c).FromFig.5(d)itcanbeseenthatinternalstructureofformedsurfacelayermaterialhappenstochange,andexistresidualstressintheformedsurfacelayer.Thesimulationprocessshowsthattheextrusionandfrictionfromcuttingedgeresultincoldplasticdeformationofmaterialinformedsurfacelayer,andformresidualstress.Fig.6showsvariationcurveofmaximumeffectivestressofworkpieceinmetalcuttingprocess.Itcanbeseenthatmaximumeffectivestresssharplyincreasesinthestartingphase.Thevalueishighupto1.4GPaat0.11ms,andthendecreases.Chipformsgraduallyatthistime.Themaximumeffectivestresseventuallyvariesattherangeof1.21.4GPa.B.AnalysisofcuttingforceFromFig.7itcanbeseenthatthecuttingforceincreasessharplyandthendecreases,eventuallyvariesinacertainrange.Inthemetalcuttingprocess,withtheincreaseofcontactareabetweencuttingtoolandcuttinglayermaterial,cuttingforceandinnerstressofthematerialatcontactzoneincreasegradually.Whentheinnerstressisuptoyieldstrength,thematerialproducesshearingslipandflowsoutfromprimarydeformationzone.Itmakescuttingforcedecreasealittle.Materialyieldingandchipformationcontinuouslyhappen,thereforecuttingforcewavesinacertainrange.C.AnalysisofstressandstrainofcuttingtoolFromdynamicsimulationprocessitcanbeseenthatthereexistsbiggishcontactstressatcuttingedgeinthebeginningofcutting.Withtheproceedingofcutting,thematerialdeformedmovesupwardalongrakefaceandextrudesrakeface.Themaximumcontactstressatrakefacemovesupwardtoo.Aftertheformationofchip,themaximumeffectivestresswavesatacertaindistancetothecuttingedge(asshowninFig.8).Thereforecutting-toolwearissevereintheposition.Stressdistributioncurveofrakefaceat0.2msisshowninFig.9.Itcanbeseenthatcontactstressatcuttingedgeisbiggish.Itisuptomaximumvalueat0.4mmtocuttingedge,Fig.6VariationcurveofmaximumeffectivestressTime(ms)Maximumeffectivestress(GPa)Fig.4SymmetricplaneofSPHmodel2h0hhh0SolidparticleVirtualparticleSmoothinglengthInitialsmoothinglengthFig.5Deformationprocessofthecuttinglayermaterial(a)t=0.02ms(b)t=0.06ms(c)t=0.14ms(d)t=0.35msFig.7VariationcurveofcuttingforceResultantforce(kN)Time(ms)andthendecreasesgradually.curvesofmaximumeffectiveV.CONCLUSION1)ThecouplingmethodofFEMandSPHcomplementstheshortcomingsofsinglemethod.Thesimulationresultsshowthatitiseffectiveinthesimulationofmetalcuttingprocess.2)Thecuttingprocessisaplasticdeformationprocessinwhichcuttinglayermaterialproducesshearingslipduetotheextrusionofcuttingtool.3)Theextrusionandfrictionfromcuttingedgeresultincoldplasticdeformationofmaterialinformedsurfacelayer,andeventuallyformresidualstress.uidance.Withouthisconsisttruction,thispapercoul1J.-Z.Lu,J.-N.Sun,TheTheoryofMetalCuttingandCuttingTool,Beijing:MechanicalIndustryPublishingHouse,2001.2S.-JChen,Q.-LPangandK.Cheng,“Finiteelementsimulationoftheorthogonalmetalcuttingprocess”,MaterialsScienceForum,no.471-472,pp.582-586,2004.3A.-G.Mamalis,M.Horvath,A.-S.Branis,etal,“FiniteElementSimulationofChipFormationinOrthogonalMetalCutting”,JournalofMaterialsProcessingTechnology,vol.110,no.5,pp.19-27,Mar,2001.4R.Vignjevic,J.-R.Reveles,“SPHinatotallagrangianformalism”CMES-ComputerModelinginEngineeringandSciences,vol.14,no.3,pp.181-198,2006.5W.Benz,E.Asphaug,“SimulationofBrittleSolidsUsingSmoothParticleHydrodynamics”,ComputerPhysicsCommunications,vol.87,no.1-2,pp.253-265,1995.6C.Antoci,M.GallatiandSibilla,S,“Numericalsimulationof.7fcirculartubeusingSPHmethod”,KeyEngineering8ang,R.-R.Long,“SPHsimulationofhypervelocity9“SPHmethodappliedtohigh10poration.Livermore,California,1998Fig.9Stressdistributioncurveofrakefaceat0.2msFig.10showsvariationstressandstrainatcuttingtoolsurface.Withoutconsideringtheabnormallocaljumpinthecurves,itcanbeseenthatthemaximumeffectivestresssharplyincreasesto0.28GPa,andeventuallykeepwavingat0.35GPa.Themaximumeffectivestrainkeepswavingat0.03%.Elasticdeformationofcuttingtoolisverysmall4)Aftertheformationofch

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论