已阅读5页,还剩30页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题 2.01数怎么不够用了【教学目标】:1. 知识目标 :借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。会判断一个数是正数还是负数, 2.能力目标 :能应用正负数表示生活中具有相反意义的量。3.情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系【教材分析】:1. 地位与作用:标准在总体目标中提出要使学生“经历运用数学符号和图形描述现实世界的过程,建立数感和符号感,发展抽象思维”,数感是我们既熟悉又陌生的一个概念。在人们的学习和生活中经常要和各种各样的数打交道。人们会常常有意识的将一些现象与数量建立起联系,这就是数感在起作用,数感是一种主动的、自觉的或自动化的理解数和运用数的态度与意识。是人的一种基本的数学素养。对具体数量关系的感知与体验,是学生建立数感的基础,对学生理解数的意义有很大的帮助。在熟悉的生活情景中,了解负数的意义,会用负数表示一些日常生活中的问题,理解有理数的意义和运算,有效的组织这些内容的教学,是学生建立数感的基础。2.重点与难点:理解有理数的意义为重点,能用正负数表示生活中具有相反意义的量为难点【教学准备】 教具;知识竞赛成绩表、温度计、企业经营统计表.学习资料 : 1. 如果课桌的高度比标准高度高2mm记作+2mm,那么比标准高度矮3mm记作什么?现在有5张课桌,量得它们的尺寸与标准高度比较分别是+1mm,-1mm,0mm,+3mm和-1.5mm,若规定课桌的高度比标准高度最高不能超过2mm,最低不能矮过2mm才算合格,那么上述5张课桌中有几张合格?2.下面说法中,错误的是 A有理数是正数和负数的总称B有理数是整数和分数的总称C有理数是非负数和负数的总称D有理数是非正数和正数的总称3. 判断对错(“对”的入T,“错”的入F)1无限循环小数不是有理数 ( )2凡小数都是有理数 ( )3凡是有理数,都可以写成分数的形式 ( )4如果a是有理数,那么a不是整数,就是分数 ( )5正数都带“+”号 ( )6小学数学中学过的数都是正有理数 ( )7“-2”既可以看成“负2”,也可以看成“减2”,还可以看成“-1乘以2” ( )4.多选题下面说法中,正确的是 A在有理数中,零的意义仅表示没有;B0不是正数,也不是负数,但是有理数;C0是最小的整数;D0是偶数5. 把下列各数分别填在相应的表示集合的圈里分析:自然数包括正整数和0,非正数的集合包含负数和零应注意有限小数和无限循环小数都可以写成分数的形式,都是有理数 6. 把下列各数分别填在相应的大括号内:(1)正数集合: ;(2)负数集合: ;(3)非负数集合: ;(4)奇数集合: ;(5)偶数集合: ;(6)分数集合: ;(7)质数集合: ;(8)合数集合: ;说明:(1)每个括号均应填上“”删节号,意即除了已添入的数外还有其他别的数;(2)填空时,一定要分清各种数的概念和有理数的分类标准【教学过程】1. 创设情境、提出问题某班举行知识竞赛,评分标准是:答对一题加10分,答错一题扣10分,不回答得0分;每个队的基础 分均为0分。四个代表队答题情况如下表:第1题第2题第3题第4题第5题第一队对错对对错第二队错对对对第三队对对错错第四队对错对错错2. 分析探索、问题解决 分组讨论扣的分怎样表示?第四小组的总得分是多少?用前面学的数能表示吗?3.知识理顺、得出结论 数怎么不够用了?-引出课题 讲授正数、负数、有理数的定义4. .应用反思、拓展创新:用负数表示比“0”低的数,如:10,读作负10,表示比0低10分的数 启发学生再从生活中例举出用负数表示具有相反意义的 数(意图:在于鼓励学生自己寻找生活中的例子,并在寻求实例的过程中体会负数的引入是实际生活的需要:通过对实例的进一步分析,使学生认识到正负数可以用来表示现实生活中具有相反意义的量。)例1 用正数或负数表示下列各题中的数量:(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作_;(2)球赛时,如果胜2局记作+2,那么-2表示_;(3)若-4万表示亏损4万元,那么盈余3万元记作_;(4)+150米表示高出海平面150米,低于海平面200米应记作_;分析:用正、负数可分别表示具有相反意义的量,通常高于海平面的高度用正数表示,低于海平面的高度用负数表示;完全相反的两个方向,一个方向定为用正数表示,则另一个方向用负数表示;如运进与运出,收入与支出,盈利与亏损,买进与卖出,胜与负等都是具有相反意义的量解: (1)-4000千米; (2)负2局; (3)+3万元;(4)-200米例2 (1)如果把向北的方向规定为正,那么走3.5千米,走-1.2千米,走0千米的意义各是什么?(2)一天中午12时的气温是20,下午2时的气温比中午上升了4,晚上8时的气温比中午12时下降了5,下午2时的气温是多少?晚上8时的气温是多少?分析:(1)规定“向北”的方向为正,那么“向南”的方向就为负;(2)规定气温上升为“+”,那么下降就应当为“-”注意:此题气温的变化均以中午12时为准解:(1)走3.5千米就是向北走3.5千米;走-1.2千米就是向南走1.2千米;走0千米意即原地未动(2)下午2时的气温是:20+424()晚上8时的气温是:20-515()例3 下面说法中正确的是 A“向东5米”与“向西10米”不是相反意义的量;B如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;C如果气温下降6记作-6,那么+8的意义就是零上8;D若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米分析:A“向东5米”与“向西10”是相反意义的量;B-15米的意义是下降15米,而不是下降-15米;C气温下降6记作-6,那么+8的意义就是上升8,而不是零上8“下降”与“零上”不是相反意义的量D因为设1米为标准,1.20米比标准高0.20米,记作+0.20米,所以-0.05米的意义就是比标准低0.05米,即高为0.95米解:根据分析,A、B、C、均错,只有D正确,答:D5.小结回顾、纳入体系:学生交流回顾、讨论总结,教师补充如下: 概念:正数、负数、有理数. 分类:有理数的分类:两种分法、整数、分数的分类. 应用:有理数可以用来表示具有相反意义的量.6.布置作业做一做: 课本练一练: 课本 随堂练习作业:习题2.1 2.02课题 数轴【教学目标】:1.知识目标:会用数轴上的点表示有理数;借助数轴了解相反数的概念,知道有理数的大小。 2.能力目标 :本节是通过与温度计的比较,引导有关知识的,使学生体会数学与现实生活中实际事物联系的密切性,感受可以从实际问题中抽象出数学。3.情感态度:放飞学生的思维,给每一个学生表现的机会,使他们寻找自己的兴趣。【教材分析】:1.地位与作用:通过本节的学习,可以帮助学生进一步理解和掌握上节学过的负数,而且这些知识可以作为出学有理数加法的学生来说是一种很容易理解的“工具”。2.重点与难点:重点:能用数轴上的点表示有理数;难点:相反数意义的理解。【教学准备】教具:温度计、一个杯子盛有冰水混合物、多媒体展台课堂设计:从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等【教学过程】1. .创设情境、提出问题首先回顾在小学中是如何利用数轴表示正数和零的(学生思考回答)。上节课学习了负数,能不能在直线上表示出负数呢?换句话,能不能用数轴上的点表示有理数?(学生猜想)问题1、日常生活中的温度计如何读呢? 2.分析探索、问题解决教师拿出准备好的温度计,让学生观察并试着读出来,然后把温度计放入冰水混合物10秒后取出,再让学生观察并读出温度,通过多媒体展台,展示温度在零摄氏度以下的温度计,学生观察回答。体会用数轴上的点表示正数、零、负数,从而引导学生体会用数轴上的点表示有理数的方法。比一比: 把温度计横放(学生观察讨论)数抽的特点?师说明数轴三要素原点、单位长度、正方向。如温度计上0。C表示原点,温度计上3。C表示位于原点右边3个长度单位的点,温度计上5。C表示位于原点左边5个单位长度的点。 画上条数轴(小组内交流画法),学会画数轴。 3知识理顺、得出结论: 展示例1与例2,学生回答。让学生从两个不同的侧面体会数形结合。问题2 2与2,7与7有什么相同点与不同点?在数轴上画出表示这几个有理数的点,观察它们在数轴上的位置有什么关系?比较后归纳、描述并交流。议一议 借助温度计讨论比较有理数大小的方法并总结:数轴上两个点表示的数,右边总比左边的大;正数大于0,负数小于0,正数大于负数。4应用反思、拓展创新:通过课本27页随堂练习,学生自己寻找疑难问题,小组讨论解决。5、小结回顾、纳入体系:1、 小组内交流2、 每小组派代表讨论7. .布置作业: 2.03绝对值【教学目标】1.知识目标借助数轴,初步理解绝对值的概念;能求一个数的绝对值;会利用绝对值比较两个负数的大小.2.能力目标通过应用绝对值解决实际)问题;渗透数形结合等思想方法,并注意培养学生的概括能力3.情感态度帮助学生体会绝对值的意义和作用.感受数学在生活中的价值.【教材分析】1.地位与作用:绝对值是继有理数、数轴之后又一个新的概念,同时又是逻辑推理的初步和开始,其重要性体现在:一方面,定义从几何的角度给出,也就是从数轴上表示数的点在数轴上的位置出发,得到定义。而数轴的概念、画法,利用数轴比较数的大小及相反数的概念为本节内容奠定了基础;另一方面,在有理数运算以及后面根式内容中,都是以绝对值的知识为基础的,因此,本节内容具有承上启下的作用。2.重点与难点:本节的重点是让学生直观理解绝对值的含义,本节的难点是正确理解绝对值的代数意义及其应用。【教学准备】数学注意事项:对于绝对值的概念教学要把握和控制其深度和广度。不要求在绝对值号内出现多重符号的化简;标准要求不出现求字母的绝对值,是对全体学生而言,对于优生可以渗透。对于例2,学生初次接触推理,不可强调过死,但要强调比较方法不唯一的。教学方法采用启发诱导,自主学习与合作学习相结合。【教学过程】1. 情境、提出问题:小明、小强、小华分别在三个车站等车去学校,其位置如图所示: 小明 学校小强 小华 (出幻灯片) -6 5 4 3 2 1 0 1 2 3 4 5 6 7 8提出问题:小明、小强、小华所在位置表示的数是多少?他们各距学校(原点)多远?(几个单位长度)由不同层次的学生来回答,并进行纠正。小明、小强、小华所在位置表示的数是5、2、5。小明距学校5个单位,小强距学校2个单位,小华距学校5个单位。2分析探索、问题解决在生活中,有些问题我们只考虑数的大小而不考虑方向,如:为了计算汽车行驶所耗的汽油,起主要作用的是汽车行驶的路程而不是行驶的方向,这就需要引进一个新的概念绝对值。(板书课题)带着这个问题看书P28页,并解决以下几个问题:什么叫做绝对值?怎样用语言表达?其关键词是什么?绝对值用符号怎样表示?学生自己看书,勾画重点字词。(培养学生的自主学习习惯)3. .知识理顺、得出结论:初步形成概念,由学生回答上面的、两个问题(可让学生对照数轴,再说出几个正数、负数的绝对值)。深化对概念的理解:绝对值的意义是在什么条件下给出的;主要解决的是什么问题。由小组讨论解决:(引导学生得出:绝对值是利用数轴这一直观条件得出的;它主要是解决在数轴上表示数的点到原点有几个单位长度(距离)的问题,这是绝对值的几何意义)。互为相反的两个数的绝对值有什么关系?(相等)4.运用反思,拓展创新。1、典例解析例1、求下列各数的绝对值21,4/9,0,7.8,15.5分析:先表示出各数的绝对值,然后根据绝对值的意义写出结果,即“一添二去”。(添绝对值符号,再去掉绝对值的符号)解:-21=21,+4/9=4/9,0=0,-7.8=7.8,15.5=15.5反例强化:2121对吗?21是负数吗?例2:(指导学生重点看解题的书写格式)。例2还可以怎么比较?请说一说。(用数轴比较,强调方法的多样性)(注意有两种书写方式:一是用语言叙述,二是用符号表示,无论学生写出哪一种,都应表扬、肯定。)2、议一议:以上各数可分为几类?请分一下。每类数的绝对值与原数有什么关系?小组讨论后,写出它的关系。3、拓展:绝对值的代数意义:正数的绝对值是它的本身;负数的绝对值是它的相反数;0的绝对值是0。对有理数的再认识:一个有理数可以看成是由符号和绝对值两部分组成。4、拓展二:在数轴上表示下列每小题的两个数,并比较它们的大小:5,34,1.5求出中各小题两个数的绝对值,并比较它们的大小。比较5,3,4,1.5的大小和它们绝对值的大小。你发现了什么?(鼓励学生大胆地表述自己的观点和看法)诱导学生,概括出:“两个负数比较大小,绝对值大的反而小”。(也可说成:“绝对值大的负数反而小”或“绝对值小的负数反而大”。)结论:以上可作为比较两个负数及多个负数大小的方法。5、比一比做随堂练习及习题2.3第4题(锻炼学生快速、准确、整齐的书写能力)反馈自救(学生小组交流,修改完善) 5、小结回顾、纳入体系 1、你的收获是什么?2、你的困难是什么?3、你还想说些什么? 6.布置作业:1、自选作业:从习题2.3中17题中任选几个题目(数量不限)2、能力挑战作业:P30“试一试”(自愿做)3.课堂作业;习题2.3第2题. 一、课题 2.4有理数的加法(1)二、教学目标1使学生掌握有理数加法法则,并能运用法则进行计算;2在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力三、教学重点和难点重点:有理数加法法则难点:异号两数相加的法则四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、师生共同研究有理数加法法则前面我们学习了有关有理数的一些基础知识,从今天起开始学习有理数的运算这节课我们来研究两个有理数的加法两个有理数相加,有多少种不同的情形?为此,我们来看一个大家熟悉的实际问题:足球比赛中赢球个数与输球个数是相反意义的量若我们规定赢球为“正”,输球为“负”比如,赢3球记为+3,输2球记为-2学校足球队在一场比赛中的胜负可能有以下各种不同的情形:(1)上半场赢了3球,下半场赢了2球,那么全场共赢了5球也就是(+3)+(+2)=+5 (2)上半场输了2球,下半场输了1球,那么全场共输了3球也就是(-2)+(-1)=-3 现在,请同学们说出其他可能的情形答:上半场赢了3球,下半场输了2球,全场赢了1球,也就是(+3)+(-2)=+1; 上半场输了3球,下半场赢了2球,全场输了1球,也就是(-3)+(+2)=-1; 上半场赢了3球下半场不输不赢,全场仍赢3球,也就是(+3)+0=+3; 上半场输了2球,下半场两队都没有进球,全场仍输2球,也就是(-2)+0=-2;上半场打平,下半场也打平,全场仍是平局,也就是0+0=0 上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法现在我们大家仔细观察比较这7个算式,看能不能从这些算式中得到启发,想办法归纳出进行有理数加法的法则?也就是结果的符号怎么定?绝对值怎么算?这里,先让学生思考23分钟,再由学生自己归纳出有理数加法法则:1同号两数相加,取相同的符号,并把绝对值相加;2绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0;3一个数同0相加,仍得这个数例题1:课本33页内容,解答略(注:可以以小组为单位让学生自批自改)(二)、应用举例 变式练习例1 计算下列算式的结果,并说明理由:(三)、小结这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则今后我们经常要用类似的思想方法研究其他问题应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事七、 布置作业:一、课题 2.4有理数的加法(2)二、教学目标1使学生掌握有理数加法的运算律,并能运用加法运算律简化运算;2培养学生观察、比较、归纳及运算能力三、教学重点和难点1重点:有理数加法运算律2难点:灵活运用运算律使运算简便四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、 从学生原有认知结构提出问题1叙述有理数的加法法则2“有理数加法”与小学里学过的数的加法有什么区别和联系?答:进行有理数加法运算,先要根据具体情况正确地选用法则,确定和的符号,这与小学里学过的数的加法是不同的;而计算“和”的绝对值,用的是小学里学过的加法或减法运算3计算下列各题,并说明是根据哪一条运算法则?(1)(-9.18)+6.18; (2)6.18+(-9.18); (3)(-2.37)+(-4.63);4计算下列各题:(1)8+(-5)+(-4); (2)8+(-5)+(-4); (3)(-7)+(-10)+(-11);(4)(-7)+(-10)+(-11); (5)(-22)+(-27)+(+27);(6)(-22)+(-27)+(+27)(二)、师生共同研究形成有理数运算律通过上面练习,引导学生得出:交换律两个有理数相加,交换加数的位置,和不变用代数式表示上面一段话:a+b=b+a运算律式子中的字母a,b表示任意的一个有理数,可以是正数,也可以是负数或者零在同一个式子中,同一个字母表示同一个数结合律三个数相加,先把前两个数相加,或者先把后两个数相加,和不变用代数式表示上面一段话:(a+b)+c=a+(b+c)这里a,b,c表示任意三个有理数(三)、运用举例 变式练习根据加法交换律和结合律可以推出:三个以上的有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加例1 例2、课堂练习1计算:(要求注理由)(1)23+(-17)+6+(-22); (2)(-2)+3+1+(-3)+2+(-4);(3)(-7)+(-6.5)+(-3)+6.52计算:(要求注理由)七、练习设计1计算:(要求注理由)(1)(-8)+10+2+(-1); (2)5+(-6)+3+9+(-4)+(-7);(3)(-0.8)+1.2+(-0.7)+(-2.1)+0.8+3.5;2计算(要求注理由)(1)(-17)+59+(-37); (2)(-18.65)+(-6.15)+18.15+6.15;3当a=-11,b=8,c=-14时,求下列代数式的值:(1)a+b; (2)a+c;(3)a+a+a; (4)a+b+c利用有理数的加法解下列各题(第48题):4飞机的飞行高度是1000米,上升300米,又下降500米,这时飞行高度是多少?5存折中有450元,取出80元,又存入150元以后,存折中还有多少钱?6一天早晨的气温是-7,中午上升了11,半夜又下降了9,半夜的气温是多少?7小吃店一周中每天的盈亏情况如下(盈余为正):128.3元,-25.6元,-15元,27元,-7元,36.5元,98元一周总的盈亏情况如何?88筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:1.5,-3,2,-0.5,1,-2,-2,-2.58筐白菜的重量是多少?八、教学后记过去不少人错误地认为,推理训练是几何教学的目的,代数可以不讲理由其实,计算本身就是推理计算法则、运算性质都是进行计算的根据学生要知道每进行一步运算都要有根有据这样通过运算就能逐步培养学生的逻辑思维能力2.05有理数的减法【教学目标】知识目标:掌握有理式的减法的运算法则,并会应用法则说明问题。能力目标:培养学生观察、归纳的数学能力及转化的数学思想。情感目标:使学生感受事物之间的相互联系,以及已知与未知之间的转化,提高学生的学习兴趣。【教材分析】根据斯托利亚尔的观点,我们把教学作为一个过程,那么在教学一个新的内容时,我们总是把学生视为探索者,将教学过程模拟成一个“科研过程”,引导学生发现矛盾,提出问题,最后用新的理论来解决原先提出问题,解决原先发现的矛盾这种教法,归纳起来就是“三部曲”:提出问题建立理论解决问题这节课的设计正是这一教学方法的具体体现重点:有理数的减法的运算法则,以及法则的应用。8难点:在实际生活中,正、负关系的确定以及原有知识的掌握。【教学准备】 2003年8月5日4观察、归纳、合作交流、对比、类比等【教学过程】一.创设情境、提出问题提出问题:师:乌鲁木齐最高 温度为 4 度,最低 温度为 3 度 ,这天哈尔滨的温差为多少?列出算式生:(小组讨论)根据前两市的计算方法,可知温差应为最高气温-最底气温的差,所以应为4 -( - 3)= ?二、分析探索、问题解决:师:你能否用身边的知识找到等式的答案?生:例如:跳水运动员从3米(即:3)板高处跳进泳池,一直到水下3米(即:-3)才停止下沉,那他一共经过的距离是6米即:3 -( - 3)6。师:大家注意观察下面的两个算式,你能得到什么启发。 3 -( - 3)63 + 3 6生:相同点:两个算式的结果都等于6。不同点:原来的“-”变成了“+”;原来的(-3)变成了(+3)。师:大家再来观察下列一组数值,你能得出什么结论?50 - 20 = 30 50 +(-20)=3050 -10=40 50 +(- 10 )= 4050 - 0 = 50 50 +0 = 5050 -10 = 40 50 +(-10)= 4050 - 20 = 30 50 + (-20)=30三、.知识理顺、得出结论生:(小组讨论)减去一个数,等于加上这个数的相反数注:也可以有其他得表述方法、及法则中的两个变化四、应用反思、拓展创新:例1 计算下列各题:(1)9 -(-5) (2)(-3)- 1(3)0 8 (4)(-5) - 0例2:世界上最高的山峰是珠穆朗玛峰,其海拔高度是 8848 米,吐鲁番盆地的海拔高度是 155 米,两处高度相差多少米?估计有多少层楼高? 生:独立完成五、 小结回顾纳入体系:师:通过本课的探讨学习,你获得了那些新的知识,你认为你有那些方面的进步。生:(个人回顾同桌交流给大家说说)六、 布置作业:2.06有理数的加减混合运算【教学目标】 知识目标:初步会用有理数的加、减运算法则进行混合运算,并会用运算律进行简便计算。 能力目标:利用有理数的加减混合运算解决一些简单实际问题,使学生初步了解类比学习的思想方法。 情感目标:通过有理数的混合运算解决实际问题,培养学生浓厚的学习兴趣,体会有理数混合运算的意义和作用,感受数学在生活中的价值。【教材分析】1 地位与作用:本节内容是本章重点之一,标准中强调:重视对数的意义的理解,培养学生的数感和符号感;淡化过分“形式化”和记忆的要求,重视在具体情境中去体验、理解有关知识;注重过程,提倡在学习过程中学生的自主活动,培养发现规律、探求模式的能力;注重应用,加强对学生数学应用意识和解决实际问题能力的培养;。因此本节内容把有理数的加减混合运算融入实际问题中,既提高了学生学习数学的积极性,又突出了标准对本节内容的特别要求。本节内容也为后继学习数学知识作必要的基本运算技能,虽注重应用,加强对学生数学应用意识和解决实际问题能力的培养;但基本的运算技能也是学习数学必不可少的。因此本节内容对学生学习数学有着非常重要的作用。2 重点:利用有理数的混合运算解决实际问题。3 难点:用运算律进行简便计算。【教学准备】方法:自主探究、合作交流 教具:扑克牌、多媒体【教学过程】一、 创设情境、提出问题多媒体演示一架飞机进行特技表演,雷达记录起飞后的高度变化如下表:高度变化记作上升4.5千米+4.5千米下降3.2千米3.2千米上升1.1千米+1.1千米下降1.4千米1.4千米此时飞机比起飞点高多少千米?(激情引趣导入新课)提出问题:(1)让学生独立思考理解高度变化的意义;(2)小组探究此时飞机与起飞点的高度,得出以下两种计算方法:(1)4.5+(3.2)+1.1+(1.4) (2)4.53.2+1.11.4=1.3+1.1+(1.4) =1.31.11.4=2.4+(1.4) =2.41.4=1(千米) =1(千米)师:比较以上两种算法,你发现了什么? (学生各抒已见,大胆发言。教师表扬鼓励进行点评。)二分析探索、问题解决、1、 例1 计算: (1)+()() (2)()+()教师示范一题的解题格式,另一题学生独立完成。(培养学生规范化解题的良好习惯)2、 跟踪练习:(1) 计算:()(2) 水库处理人员为了掌握水库蓄水情况,需要观测水库的水位变化。下表是某水库一周内水位高低的变化情况(用正数表示水位比前一日上升数,用负数表示下降数)星期一二三四五六日水位变化/米0.120.020.130.200.080.020.32请分析这个星期水位的总体变化情况。(先让学生说出自己的思路,然后独立完成。以提高学生的语言表达能力和独立完成作业的良好学习习惯。)三知识理顺、得出结论、扑克游戏:(1) 先要求学生认真学习游戏规则(见课本);(2) 然后小组内进行游戏;获胜者再在全班游戏。(促进学生合作交流意识以及对待学习的积极主动意识)四、应用反思、拓展创新(先要求学生独立计算、思考、解决,再在小组内相互交流。)例2 计算()()要求:(1)计算结果(2)利用以前所学的知识,看还有没有更简便的运算方法。生:可以使用加法的交换律和结合律来简化运算解:()()()()()()()1师:谁能总结一下本题的思路方法?学生积极主动发言,发表自已的见解。师总结:在进行有理数的加减混合运算时,可以适当运用加法交换律和结合律来简化运算。五、小结回顾 、纳入体系; 学生交流,教师作以下补充1. 知识点:利用有理数的加减法法则进行加理数的混合运算,以及用加法的交换律和结合律来简化运算,最终解决实际问题。2. 数学思想方法:类比学习法。(类比小学所学加法的交换律和结合律进行学习,培养学生类比学习的推理能力)六、布置作业2.07水位的变化【教学目标】 知识目标:初步会用正、负有理数表示某些相反意义的量,进一步会用有理数的加、减运算法则进行有理数的加减混合运算。 能力目标:利用正、负有理数的相反意义和有理数的加减混合运算解决一些简单实际问题,使学生初步了解用旧知解新知的转化思想。 情感目标:通过正、负有理数数的相反意义和有理数的加减混合运算解决实际问题,培养学生浓厚的学习兴趣,体会学习有理数的意义和作用,感受数学在生活中的价值。【教材分析】4 地位与作用:本节内容是对前几节内容巩固与小结,标准中提出在教学中,应注重让学生在实际背景中理解基本的数量关系和变化规律,注重使学生经历从实际问题中建立数学模型。重视对数的意义的理解,培养学生的数感和符号感;淡化过分“形式化”和记忆的要求,重视在具体情境中去体验、理解有关知识;注重过程,提倡在学习过程中学生的自主活动,培养发现规律、探求模式的能力;注重应用,加强对学生数学应用意识和解决实际问题能力的培养;。本节内容正是主学生从实际问题中建立数学模型,抽象出数学问题,培养学生学数学用数学的意识,也是让学生体验数学与实际生活的密切关系,以提高学生学习数学的积极性和主动性,是本章的一个小结与升华。5 重点:利用正负有理数的相反意义及有理数的加减运算解决实际问题。6 难点:利用正负有理数的相反意义及有理数的加减运算解决实际问题。【教学准备】方法:自主探究、合作交流【教学过程】一、 设情境、提出问题多媒体演示流花河的水文资料(单位:米),问:取河流的警戒水位为0点,那么图中的其他数据可以分别记作什么?(激情引趣导入新课,激发学生的创新思维)提出问题:下表是小明记录的今年雨季流花河一周内的水位变化情况(上周末的水位达到警戒水位)星期一二三四五六日水位变化/米0.200.810.350.030.280.360.01注:正数表示水位比前一天上升数,负数表示水位比前一天下降数。提出问题:(可把第3个问题提到第1个位置,因要解决第1个问题应先解决第3个问题较简便)(1) 完成下面的本周水位记录表:(独立思考后独立完成)星期一二三四五六日水位变化/米73.60(2) 本周哪一天的水位最高?哪一天河流的水位最低?它们位于警戒水位之上还是之下?与警戒水位的距离是多少米?(先小组讨论要解决此问题须先作什么准备工作?然后回答问题。)(3) 与上周末相比,本周末河流水位是上升了还下降了?(先讨论后回答)(4) 以警戒水位为0点,用折线统计图表示本周的水位变化情况。(独立思考独立完成,培养学生规范化解题的良好习惯)二、 分析探索、问题解决 学生分组讨论交流,完成上述问题,教师讲评三、应用反思、拓展创新光明学校六(1)班学生的平均身高是156cm(1) 下表给出了该班6名同学的身高情况(单位:cm)。试完成下表:姓名小明小彬小丽小亮小颖小山身高155150161身高与平均身高的差值1203(2) 谁最高?谁最矮?两人的身高相差多少?(先让学生说出自己的思路,然后独立完成。以提高学生的语言表达能力和独立完成作业的良好学习习惯。)五、小结回顾、纳入体系:由学生交流回顾,教师补充如下:1. 知识点:利用正、负数表示相反意义的量,进行有理数的加减混合运算解决实际问题。2数学思想方法:用旧知解决新问题的转化思想。六、布置作业1. 课本习题2.9必做题:第1题(2)(4)(6)小题;选做题:第2题。2.拓展题:举一生活中与水位变化类似的应用问题,并在小组互相解答。(巩固知识,培养学生运用数学的意识,感受在生活中的价值。)【教后札记】: 一、课题 2.8有理数的乘法(1) 二、教学目标1使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性;2培养学生观察、归纳、概括及运算能力三、教学重点和难点重点:有理数乘法的运算难点:有理数乘法中的符号法则四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、从学生原有认知结构提出问题1计算(-2)+(-2)+(-2)2有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)3有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)4根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)(二)、师生共同研究有理数乘法法则问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?解:32=6(厘米) 答:上升了6厘米问题2 水库的水位平均每小时上升-3厘米,2小时上升多少厘米?解:(-3)2=-6(厘米) 答:上升-6厘米(即下降6厘米)引导学生比较,得出:把一个因数换成它的相反数,所得的积是原来的积的相反数这是一条很重要的结论,应用此结论,3(-2)=?(-3)(-2)=?(学生答)把3(-2)和式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“6”的相反数“-6”,即3(-2)=-6把(-3)(-2)和式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“-6”的相反数“6”,即(-3)(-2)=6此外,(-3)0=0综合上面各种情况,引导学生自己归纳出有理数乘法的法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0继而教师强调指出:“同号得正”中正数乘以正数得正数就是小学学习的乘法,有理数中特别注意“负负得正”和“异号得负”用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法较小学当然复杂多了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了因此,在进行有理数乘法时更需时时强调:先定符号后定值(三)、运用举例,变式练习例1 计算:例2 某一物体温度每小时上升a度,现在温度是0度(1)t小时后温度是多少?(2)当a,t分别是下列各数时的结果:a=3,t=2;a=-3,t=2;a=3,t=-2;a=-3,t=-2;教师引导学生检验一下(2)中各结果是否合乎实际课堂练习1口答:(1)6(-9); (2)(-6)(-9); (3)(-6)9; (4)(-6)1;(5)(-6)(-1); (6) 6(-1); (7)(-6)0; (8)0(-6);2口答:(1)1(-5); (2)(-1)(-5); (3)+(-5);(4)-(-5); (5)1a; (6)(-1)a这一组题做完后让学生自己总结:一个数乘以1都等于它本身;一个数乘以-1都等于它的相反数+(-5)可以看成是1(-5),-(-5)可以看成是(-1)(-5)同时教师强调指出,a可以是正数,也可以是负数或0;-a未必是负数,也可以是正数或03当a,b是下列各数值时,填写空格中计算的积与和:4填空:(1)1(-6)=_;(2)1+(-6)=_;(3)(-1)6=_;(4)(-1)+6=_;(5)(-1)(-6)=_;(6)(-1)+(-6)=_;(9)|-7|-3|=_;(10)(-7)(-3)=_.5判断下列方程的解是正数还是负数或0:(1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0(四)、小结今天主要学习了有理数乘法法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”七、练习设计1计算:(1)(-16)15; (2)(-9)(-14); (3)(-36)(-1);(4) 13(-11); (5)(-25)16; (6)(-10)(-16)2计算:(1)2.9 (-0.4); (2)-30.50.2; (3)0.72 (-1.25);(4)100(-0.001); (5)-4.8(-1.25); (6)-4.5(-0.32)3计算:4填空(用“”或“”号连接):(1)如果 a0,b0,那么 ab _0;(2)如果 a0,b0,那么ab _0;(3)如果a0时,那么a _2a;(4)如果a0时,那么a _2a一、课题 2.4有理数的乘法(2) 二、教学目标1使学生掌握多个有理数相乘的积的符号法则;2掌握有理数乘法的运算律,并利用运算律简化乘法运算;3培养学生观察、归纳、概括及运算能力三、教学重点和难点重点:乘法的符号法则和乘法的运算律难点:积的符号的确定四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、从学生原有认知结构提出问题1叙述有理数乘法法则2计算(五分钟训练):(1)(-2)3; (2)(-2)(-3); (3)4(-1.5); (4)(-5)(-2.4);(5)29(-21); (6)(-2.5)16; (7) 970(-6);(17)1234(-5); (18)123(-4)(-5);(19)12(-3)(-4)(-5); (20)1(-2)(-3)(-4)(-5);(21)(-1)(-2)(-3)(-4)(-5)(二)、讲授新课1几个有理数相乘的积的符号法则引导学生观察上面各题的计算结果,找一找积的符号与什么有关?(17),(19),(21)等题积为负数,负因数的个数是奇数个;(18),(20)等题积为正数,负因数个数是偶数个是不是规律?再做几题试试:(1)3(-5); (2)3(-5)(-2); (3)3(-5)(-2)(-4);(4)3(-5)(-2)(-4)(-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 翻转课堂在小学音乐教学中的创新实践课题报告教学研究课题报告
- 2025年泉州工程职业技术学院马克思主义基本原理概论期末考试笔试题库
- 2024年长江大学文理学院马克思主义基本原理概论期末考试真题汇编
- 2025年外交学院马克思主义基本原理概论期末考试模拟试卷
- 2024年防灾科技学院马克思主义基本原理概论期末考试笔试题库
- 2024年天津医科大学马克思主义基本原理概论期末考试真题汇编
- 2025年绍兴职业技术学院马克思主义基本原理概论期末考试笔试题库
- 2024年北京京北职业技术学院马克思主义基本原理概论期末考试笔试题库
- 2024年安徽国防科技职业学院马克思主义基本原理概论期末考试笔试题库
- 2025年贵阳幼儿师范高等专科学校马克思主义基本原理概论期末考试笔试真题汇编
- 《寻找时传祥》课件
- GB/T 28570-2025水轮发电机组状态在线监测系统技术导则
- 安全质量组织机构及各岗位职责
- 30个中医针灸临床病历
- 企业社会责任实践与品牌建设策略
- 现代摄影工作室办公设计方案
- 库房婚庆道具管理办法
- 智能制造职业技能培训教学计划
- 机电安装工程师中级职称论文范文
- 应急装备与技术课件
- 小学“十五五”发展规划
评论
0/150
提交评论