




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第4讲等差数列、等比数列与数列求和一、填空题1设an是公差不为0的等差数列,a12且a1,a3,a6成等比数列,则an的前n项和Sn_.解析 由题意设等差数列公差为d,则a12,a322d,a625d.又a1,a3,a6成等比数列,aa1a6,即(22d)22(25d),整理得2d2d0.d0,d,Snna1dn.答案 n2数列an的通项公式an,若前n项的和为10,则项数为_解析 an,Sn110,n120.答案 1203已知等差数列an的前n项和为Sn,a55,S515,则数列的前100项和为_解析a55,S515,15,即a11.d1,ann.设数列的前n项和为Tn.T1001.答案4已知数列an,bn都是等差数列,a15,b17,且a20b2060.则anbn的前20项的和为_解析由题意知anbn也为等差数列,所以anbn的前20项和为:S20720.答案7205已知等比数列an的前n项和Sn2n1,则aaa_.解析当n1时,a1S11,当n2时,anSnSn12n1(2n11)2n1,又a11适合上式an2n1,a4n1.数列a是以a1为首项,以4为公比的等比数列aaa(4n1)答案(4n1)6定义运算:adbc,若数列an满足1且12(nN*),则a3_,数列an的通项公式为an_.解析 由题意得a111,3an13an12即a12,an1an4.an是以2为首项,4为公差的等差数列,an24(n1)4n2,a343210.答案 104n27在等比数列an中,a1,a44,则公比q_;|a1|a2|an|_.解析q38,q2.an(2)n1,|an|2n2,|a1|a2|an|2n1.答案22n18已知Sn是等差数列an的前n项和,且S1135S6,则S17的值为_解析因S1135S6,得11a1d356a1d,即a18d7,所以S1717a1d17(a18d)177119.答案1199等差数列an的公差不为零,a47,a1,a2,a5成等比数列,数列Tn满足条件Tna2a4a8a2n,则Tn_.解析设an的公差为d0,由a1,a2,a5成等比数列,得aa1a5,即(72d)2(73d)(7d)所以d2或d0(舍去)所以an7(n4)22n1.又a2n22n12n11,故Tn(221)(231)(241)(2n11) (22232n1)n2n2n4.答案2n2n410数列an的通项公式an,如果bn,那么bn的前n项和为_解析 bn,所以b1b2bn1.答案 1二、解答题11已知an为等差数列,且a36,a60.(1)求an的通项公式;(2)若等比数列bn满足b18,b2a1a2a3,求bn的前n项和公式解(1)设等差数列an的公差为d.因为a36,a60,所以解得a110,d2.所以an10(n1)22n12.(2)设等比数列bn的公比为q.因为b2a1a2a324,b18,所以8q24,即q3.所以bn的前n项和公式为Sn4(13n)12已知首项不为零的数列an的前n项和为Sn,若对任意的r,tN*,都有2.(1)判断an是否是等差数列,并证明你的结论;(2)若a11,b11,数列bn的第n项是数列an的第bn1项(n2),求bn;(3)求和Tna1b1a2b2anbn.解(1)an是等差数列证明如下:因为a1S10,令t1,rn,则由2,得n2,即Sna1n2,所以当n2时,anSnSn1(2n1)a1,且n1时此式也成立,所以an1an2a1(nN*),即an是以a1为首项,2a1为公差的等差数列(2)当a11时,由(1)知ana1(2n1)2n1,依题意,当n2时,bnabn12bn11,所以bn12(bn11),又b112,所以bn1是以2为首项,2为公比的等比数列,所以bn122n1,即bn2n1.(3)因为anbn(2n1)(2n1)(2n1)2n(2n1)Tn12322(2n1)2n13(2n1),即Tn12322(2n1)2nn2,2Tn122323(2n1)2n12n2,得Tn(2n3)2n1n26.13已知数列an是首项为a1,公比q的等比数列,设bn23logan(nN*),数列cn满足cnanbn.(1)求数列bn的通项公式;(2)求数列cn的前n项和Sn.解(1)由题意,知ann(nN*),又bn3logan2,故bn3n2(nN*)(2)由(1),知ann,bn3n2(nN*),cn(3n2)n(nN*)Sn14273(3n5)n1(3n2)n,于是Sn124374(3n5)n(3n2)n1,两式相减,得Sn3(3n2)n1(3n2)n1,Snn(nN*)14 记公差d0的等差数列an的前n项和为Sn,已知a12,S3123.(1)求数列an的通项公式an及前n项和Sn.(2)已知等比数列bnk,bnan,n11,n23,求nk.(3)问数列an中是否存在互不相同的三项构成等比数列,说明理由解 (1)因为a12,S33a13d123,所以d2.所以ana1(n1)d2n,Snn2(1)n.(2)因为bnan2n,所以bnk2nk.又因为数列bnk的首项bn1b12,公比q3,所以bnk23k1.所以2nk23k1,则nk3k1.(3)假设存在三项ar,as,at成等比数列,则aarat,来源:学。科。网即有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全文图解《改革开放简史》
- 剪纸瓶子教学课件
- 新解读《GB-T 36775-2018柑橘斑点病菌检疫鉴定方法》
- 浙江省名校新高考研究联盟2026届高三第一次联考生物学试题(有答案)
- 二胡教学课件安排
- 生物老师基础知识培训班课件
- 生物安全知识培训材料课件
- 2025年教师资格证考试(中学信息技术教学论)教育知识与能力冲刺押题卷
- 2025年注册电气工程师考试冲刺试卷
- 生活消防安全知识培训课件
- GB/T 4706.117-2024家用和类似用途电器的安全第117部分:带非柔性加热部件的电暖床垫的特殊要求
- 注重整体强化联系提高质量(西南师大李忠如)
- NB-T 33025-2020 电动汽车快速更换电池箱通.用要求
- JT-T-864-2013吸油拖栏行业标准
- 广东省深圳市2022-2023学年八年级下学期英语期末试卷(含答案)
- 知识题库-人社劳动知识竞赛测试题及答案(十三)
- 读书分享交流《爱心与教育》课件
- 新手直播方案
- 消毒隔离技术
- 符合RBT214-2017防雷装置检测机构质量手册+检测作业指导书2021首版
- 6S证据资源金字塔模型
评论
0/150
提交评论