6立方米搅拌反应釜(酯化釜)和储罐设计(全套CAD图+说明书+开题报告+翻译)
收藏
资源目录
压缩包内文档预览:
编号:673978
类型:共享资源
大小:2.51MB
格式:RAR
上传时间:2016-06-22
上传人:hon****an
认证信息
个人认证
丁**(实名认证)
江苏
IP属地:江苏
50
积分
- 关 键 词:
-
立方
搅拌
反应
反映
酯化
以及
设计
cad
论文
翻译
- 资源描述:
-
摘要:酯是一类重要的有机化工产品,用途很广。生产酯的反应设备已有很大的发展,但仍存在一些不足。
本设计是酯化釜和储罐的设计,为了让酯化反应更有效的进行。此设计分为两部分,一是酯化釜的设计,二是储罐的设计。其中酯化釜的设计包括酯化釜的选型、搅器的选型、搅拌器轴的设计、酯化釜的筒体设计、减速器的选用、传热部件设计、支座设计等方面。储罐设计,包括储罐选型、储罐尺寸确定、封头设计、罐体结构设计等方面。
总体设计方案设计主要是根据酯化釜的结构,材料性质,装置效率、总体造价而最终确定为椭圆形盖酯化釜。酯化釜的结构设计比较的复杂,相对而言,储罐的设计就简单一些,它的总体设计方案是卧式储罐。
关键词:酯化釜 ; 储罐 ; 设计 ; 结构







- 内容简介:
-
毕业设计 (论文 )任务 书 学 院 : 机械工程学院 题 目: 6 设计(论文)内容及要求 : 一、 装置基本参数 : 搅拌器 工作压力: 容器内 常压 夹套 盘管 作温度: 容器内 230 夹套 150 盘管 250 介质: 容器内 脂肪酸 夹套 水蒸气 盘管 导热油 储罐 全容积: 二、 储罐:常温常压 全容积 22.9 m 设计图纸及说明书要求 : 设计图纸折合 0图 3 张以上(其中手工绘图不少于 1 张 1图)。设计说明书 12000 字以上,并有 2000的外文文献翻译和 300 字左右中英文摘要。 三、 工作质量要求 : 设计符合最新国家标准及行业标准。设计图样达到工程设计施工水平。 四、 参考文献 化工原理、钢制压力容器、钢制管壳式换热器、化工设备零部件等。 指导老师 : 南华大学本科生毕业设计(论文)开题报告 设计(论文)题目 6m酯化釜 设计(论文)题目来源 自选 设计(论文)题目类型 工程设计 起止时间 一、 设计(论文)依据及研究意义: 酯化釜 是 个搅拌设备,搅拌设备在整个工业中都起着很重要的角色。酯化釜在工业生产中应用范围很广,尤其是化学工业中,很多的化工生产都或多或少的应用着搅拌操作。是 酯化反应 的重要设备,历经多年发展,其设计制造技术日臻成熟且趋于大型化。国内 酯化釜 历经引进、模仿、改进到自主研发取得了较大成就,同时在 釜 内件改进与研制方面也得到了 较快发展,产生了一批有较强研发实力的科研单位。 分析了内外室体积变化对酯化率的影响,为装置的改造以及新的装置的设计提供依据。 因此对该釜的设计与研究,有着深远的现实意义。 二、 设计(论文)主要研究的内容、预期目标(技术方案、路线): 根据设计任务书,我本次毕业设计的主要内容是: 1、 酯化釜及储罐的设计 ; 2、设备制造过程中所使用零部件的选择; 3、设备制造的流程及注意事项。 设计技术方案及路线: 1、资料收集整理; 2、根据所提供的设计参数完成设备的结构设计; 3、设备主题部分的制造工艺的编制。 三、设计(论文)的研究重点及难点: 重点:本次设计的酯化釜及储罐为三类压力容器,本次设计的研究的重点是酯化釜及储罐结构设计,强度校核及相关制造工艺的编制。根据所给工艺参数,包括温度及压力,筒体过厚会造成材料的浪费,也会提高设备的造价,筒体过薄了,会造成设备的安全问题,也会减少设备的寿命,所以设计酯化釜及储罐的筒体及封头厚度,是整个设计当中的一个重点。酯化釜是个搅拌设备,其内的各个部件的强度也是重点。 难点:搅拌器是整个酯化釜很重要的部件,搅拌器的类型也很多,要根据所给的条件,合理的选取搅拌器的类型也是个难点。酯化反应是一种有毒气体,设备结构特殊,制造公差要求严,这给制造工程的成型、焊接、组装、热处理等带来一定困难。 四、设计(论文)研究方法及步骤(进度安排): 1 月 6 日至 1 月 14 日:网上查询有关设计资料; 1 月 14 日至 2 月 25 日:进行 关专项练习; 2 月 25 日至 4 月 3 日:查阅资料,找出设计依据,理出设计思路; 4 月 3 日至 5 月 10 日:进行酯化釜的分析与计算; 5 月 10 日至 5 月 20 日:绘制零件图、装配图; 5 月 20 日至 5 月 30 日;整理图纸,进行打印。写出设计明书并校核; 6 月 1 日至 6 月 3 日:准备答辩。 五、进行设计(论文)所需条件: 要完成本次设计,不仅要有基本的设计绘图能力(包括手工绘 图与电脑 图能力),更要懂得更多相关设计思路与设计准则规范;另外,必须得有单独查阅相关设计手册及相关标准的能力。 当然,肯定还要段老师的细心指导,总之,本次设计综合的把我们大学所学的专业知识仔细的考了一遍,要做好设计,必须得有扎实的基础知识。 六、指导教师意见: 签名: 年 月 日 机械工程学院毕业设计(论文) i 摘要: 酯是一类重要的有机化工产品,用途很广。生产酯的反应设备已有很大的发展,但仍存在一些不足。 本设计是酯化釜和储罐的设计, 为了 让酯化反应更有效的进行。此设计分为两部分,一是酯化釜的设计,二是储罐的设计。其中酯化釜的设计包括酯化釜的选型、搅器的选型、搅拌器轴的设计、酯化釜的筒体设计、减速器的选用、传热部件设计、支座设计等方面。储罐设计,包括储罐选型、储罐尺寸确定、封头设计、罐体结构设计等方面。 总体设计方案设计主要是根据 酯化釜 的结构,材料性质,装置效率、总体造价而最终确定为 椭圆形盖酯化釜 。 酯化釜的结构设计比较的复杂,相对而言,储罐的设计就简单一些,它的总体设计方案是卧式储罐。 关键词: 酯化釜 ; 储罐 ; 设计 ; 结构 机械工程学院毕业设计(论文) is a of is on of be is it is of of of is to of is is is ; ; ; 机械工程学院毕业设计 第 1 页 共 45 页 前言 反应设备是通过化学反应得到反应产物的设备,或是为细胞或酶提供适宜的反应环境以达到细胞生长代谢和进行反应的设备。几乎所有的过程设备中,都包含了反应设备的存在。因此如何选用的反应器型式,确定最佳的操作条件和设计合理可靠的反应器,满足日益发展的过程工业的需求具有十分重要的意义。 经过近一个世纪的实验研究和理论探索,当今的流体混合技术已进人快速发展时期,并积累了大量可用于分析和预测混合体系的设计经验和关联式。但由于流体混合体系的多样性和物料流变特性的复杂性,目前对于搅拌设备的选型和设计还主要依 赖经验和实验,对其优劣很难用理论预测,对于能耗和生产成本,只能在一定规模的生产装置上进行对比后才能分出高低。另外对搅拌设备的放大规律至今仍无足够的认识,缺少理论指导。 本次设计的 搅拌设备 是酯化釜, 酯是一类重要的有机化工产品,除本身是溶剂、增塑剂而用于很多工业部门外,还大量用来生产聚酯,也有一部分用作有机合成的原料。酯类生产的历史悠久,其基础理论的研究也早已开始,英国化学家 852年已经提出了由酸与醇合成酯的理论。 可生成酯的方法很多,工业上绝大多数直接酯化过程均为液相反应,由于受平衡限制,反 应不能进行完全,故常用从反应混合物中移走反应产物(水,酯或两者在一起)的办法来移动平衡点 。 反应器可以是连续式的或间歇式的。间歇式反应器通常为带搅拌的反应釜;连续式反应器则是塔式的。为防止无机酸催化剂对设备的腐蚀,须妥善选择反应器的材质及结构。 酯化反应,是一类有机化学反应,是醇跟羧酸或含氧无机酸生成酯和水的反应。分为羧酸跟醇反应和无机含氧酸跟醇反应何和无机强酸跟醇的反应两类。羧酸跟醇的酯化反应是可逆的,并且一般反应极缓慢,故常用浓硫酸作催化剂 酯化釜的目的是借助搅拌器的作用是使酸跟醇在高温的条件下反应生成酯。 本题目主要解决的问题是该设备的设计,包括搅拌装置、轴封和搅拌罐三大部分设计,并画出相应的设备图。 机械工程学院毕业设计(论文 ) 第 2 页 共 45 页 酯化釜设计 论 酯化釜,顾名思义就是发生酯化反应的设备,属于搅拌设备。 搅拌设备常被称作搅拌釜(或搅拌槽),当搅拌设备用作反应器时,又被称为搅拌釜式反应器,有时简称反应釜。 釜体的结构型式通常是立式圆筒形,其高径比值主要依据操作是容器装液高径比以及装料系数大小而定。而容器的装液高径比又视容器内物料的性质、搅拌特征和搅拌器层数而异,一般取 1 大时可达 6。釜底形状有平底、椭圆底、锥形底等有时亦可 用方形釜。同时,根据工艺的传热要求,釜体外可加夹套,并通以蒸气、冷却水等载热介质;当传热面积不足时,还可在釜体内部设置盘管等。 在选择 酯化釜 时,应根据生产规模(即物料处理量)、搅拌操作目的和物料特性确定搅拌容器的形状和尺寸,在确定搅拌容器的容积时应合理选择装料系数,尽量提高设备的利用率。如果没有特殊需要,釜体一般宜选用最常用的立式圆筒形容器,并选择适宜的筒体高径比 (或容器装液高径比 )。若有传热要求,则釜体外须设置夹套结构。夹套种类有整体夹套、螺旋挡板夹套、半管夹套、蜂窝夹套,传热效果依次提高但制造成本也 相应增加。 当 酯化釜 釜卧式放置时,大多进行半釜操作。因此卧式釜与立式釜相比有更多的气 而卧式釜常用于气 气 一方面,卧式釜的料层较浅,有利于搅拌器将粉末搅动,并可借搅拌器的高速回转使粉体抛扬起来,使粉体在瞬间失重状态下进行混合。 酯化釜的材料要满足生产工艺的要求,例如耐压、耐温、耐介质腐蚀,以及保证产品清洁等。由于材料的不同,搅拌容器的制造工艺、结构也有所不同,因此可分为钢制搅拌设备、搪玻璃搅拌设备和带衬里的搅拌设备等。装衬里的目的是为了耐蚀或保护产品的清洁,衬里的种类很多,主要有不锈钢、铝、钛、铅、镍、锆、耐酸瓷砖、辉绿岩板、橡胶等。 酯化釜在工业生产中应用范围很广,尤其是化学工业中,很多的化工生产都或多或少的应用着搅拌操作。搅拌可使两种或多种的物质在彼此之中相互分散,从而机械工程学院毕业设计(论文 ) 第 3 页 共 45 页 达到均匀混合,也可以加速传热和传质过程。化学工艺过程的种种化学变化,是以参加反应物质的充分混合为前提的。对于加热,冷却和液体萃取以及气体吸收等物理变化过程,也往往要采用搅拌操作才能得到好的效果。搅拌设备在许多场合是作为反应器来应用的。 搅拌设备的作用如下: 1 使 物料混合均匀 2 使气体在液相中很好的分散 3 使固体粒子在液相中均匀的悬浮使不相溶的另一液相均匀悬浮或充分乳化 4 强化相间的传质 5 强化传热 酯化釜可以从各种不同的角度进行分类,如按照工艺用途分类,其中重要的结构搅拌器,我们可以按照搅拌器结构形式分类或按搅拌装置的安装形式分类,以下仅就搅拌装置的各种安装形式进行分类和选取,主要种类和各种的功能如表 表 种类 主要特点 立式容器中心搅拌 将搅拌装置安装在立式设备筒体的中心线上,驱动方式一般为皮带 传动和齿轮传动,用普通电机直接连接或与减速器直接连接。 偏心式搅拌 搅拌装置在立式容器上偏心安装,能防止液体在搅拌器附近产生“圆柱状回转区”,可以产生与加挡板时相近似的搅拌效果。但偏心搅拌容易产生震动,一般用于小型设备上比较合适。 倾斜式搅拌 为防止涡流产生,对简单的圆筒形或方形敞开的立式设备,可将搅拌器用于、夹板或卡盘直接安装在设备筒体的上缘,搅拌轴斜插入筒体内。此种搅拌器小型,轻便,结构简单,操作容易,应用范围广。 底搅拌 搅拌装置在设备的底部,称为底搅拌设备。其搅拌轴短而细,无中间轴承;可 用机械密封;易维护,检修;寿机械工程学院毕业设计(论文 ) 第 4 页 共 45 页 命长。 卧式容器搅拌 搅拌器安装在卧式容器上面,可降低设备的安装高度,提高搅拌设备的抗震性,改进悬浮液的状态等。 卧式双轴搅拌 搅拌器安装在两根平行的轴上,二根轴上的搅拌叶轮不同,轴速也不等,主要用于高黏度液体。 旁入式搅拌 旁入式搅拌是将搅拌装置安装在设备筒体的侧壁上,分为角度固定式和角度可变式两种。 组合式搅拌 有时为了提高混合效率,需要将两种或两种以上形式不同,转速不同的搅拌器组合起来使用,称为组合式搅拌设备。 本设计中的酯化釜是在 230,常压的条件下将 脂肪酸和醇进行反应生成酯,即作为反应器应用,综合考虑选用椭圆形底,可拆椭圆形盖,立式容器中心搅拌。 化釜选型及主要参数 化釜选型 常用的酯化釜是立式圆筒形容器,有顶盖,筒体和罐底,通过支座安装在基础或平台上。罐体在规定的操作温度和操作压力下,为物料完成其搅拌过程提供了一定的空间。本设计即采用立式圆筒形反应釜。 在知道了搅拌罐操作时盛装物料的容积后,首先要选择适宜的长径比和装料量,确定筒体的直径和高度。 罐体的长径比应考虑的主要因素有三个方面 : 一定结构型式搅拌器的叶轮直径和与其装配的搅拌罐体内径通常有一定的比例范围。随着罐体长径比的减小,搅拌器桨叶直径也相应放大,在固定的搅拌轴转速下,搅拌功率与搅拌器桨叶直径的 5 次方成正比。所以随着罐体直径的放大,功率增加很多,这对于需要较大搅拌作业功率的搅拌过程是适宜的。 罐体长径比对夹套传热有显著影响,容积一定时长径比越大罐体盛料部分表面积越大,夹套传热面积也就越大。同时长径比越大,传热表面积离罐体中心机械工程学院毕业设计(论文 ) 第 5 页 共 45 页 越近,物料的温度梯度就越小,有利于提高传热效果。 某些物料的搅 拌反应过程对罐体长径比有着特殊要求,例如发酵罐之类,为了使得通入罐内的空气与发酵液有充分的接触时间,需要有足够的液位高度,就希望长径比取得大一些。 综上,三个方面均要求长径比取得大一些。 已知容反应釜的容积为 径比选取见表 表 种类 设备内物料类型 H/般搅拌罐 液固相或液液相物料 1 液相物料 1 2 发酵罐类 料系数选取: 通常可取 果物料在反应过程中要起泡末或呈沸腾状,应取低值,约为 果物料在反应中比较平稳,可取 本设计中搅拌罐内反应为酯化反应,且为液液相反应, 取长径比 H/ 取装料系数 =N = 体直径 D i=34 = 3 4 5 . 03 . 1 4 1 . 1 0 . 8 5=中 由 制机械搅拌容器型式及主要参数的搅拌罐系列 取 800 4746标准椭圆形封头 10 1800高度 H=475直边高度 h=25封头容积 v=械工程学院毕业设计(论文 ) 第 6 页 共 45 页 罐 体高度: H=2D =2D v= 25 60 1 =整后取 H=实际长径比为 实际装料系数 =25 . 01 . 8 2 0 . 8 2 6 04 = 基本符合要求。 通过以上的计算,可知,筒体内径为 800体高度 H=1650 压: 拌器选型与计算 拌器选型 影响搅拌过程的因素及其复杂,有关搅拌器选型的资料很多,但是由于研究过程考虑 的重点不同,结论也不同,至今,搅拌器选型带有很大的经验性。为了提供能量与造成液体的流动状态,搅拌器必须有合理的结构和足够的强度。合理的结构应符合以下几个原则:叶轮的制造工艺合理,叶轮与搅拌轴的连接方式稳妥可靠,叶轮安装维修方便等。除推进式等特殊形状的叶轮加工难度大外,多数叶轮形状与加工都比较简单。采用整体式或可拆式的连接结构,可以从安装检修的方便来决定。 该反应过程为液液两相互溶液体的搅拌,互溶液体的搅拌时两种或数种互溶液体在搅拌作用下达到浓度或密度或温度以及其他物性的均匀状态的 过程,一般称为混合过程。混合过程都应规定搅拌液体达到均匀状态的标准,而以在搅拌作用下达到这个标准的混合时间 m 作为评价搅拌效果的指标。达到同样标准作用的混合时间 m 越短,搅拌器的混合性能就越好。混合时间与搅拌器的几何尺寸,叶轮的排出流量,叶轮转速以及搅拌器的滚率大小有关。 1)叶轮形式 机械工程学院毕业设计(论文 ) 第 7 页 共 45 页 各种搅拌叶轮形状按搅拌器的运动方向与叶轮表面的角度可分为三类, 即平叶,折叶和螺旋面叶。 桨式,涡轮式,锚式,框式的叶轮都是平叶或折叶,而推进式,螺杆式,螺带式的叶轮则为螺旋面叶。 由于平叶的运动方向与桨面垂直,所以当叶轮低速运转时,液体的主要流动为水平环向的流动。当叶轮转速增大时,液体的径向流动就逐渐增大。叶轮转速越高,由平叶排出的径向流越强。折叶由于桨面与运动方向成一定倾斜角度,所以在叶轮转速增大时,还有逐渐增大的径向流。螺旋面可以看成是许多折叶的组合,这些折叶的角度逐渐变化,所以螺旋面的流向也有水平环向流,径向流和轴向流,其中以轴向流最大。 为了区分叶轮排液的流向特点,根据主要排液方向将 典型叶轮分成径流型和轴流型两种,平叶的桨式,涡轮式是径流型,螺旋面叶的螺杆式,推进式是轴流型。 表 注:有者为适合,空白为不合用 桨式叶轮主要用 于排出流,是必要的场合,由于在同样的排量下,轴向流叶轮的功耗比径向流低,故轴向流叶轮使用较多。由于结构简单,即使叶径大造价也不高,故往往使用与大叶径低转速的场合。,综合考虑互溶液体混合搅拌设备 , 由表 页桨的倾斜角度 45。 搅拌器型式 流动状态 搅拌目的 对流循环 湍流循环 剪切流 低黏液混合 高黏液混合 分散 溶解 固体悬浮 气体吸收 传热 液相反应 涡轮式 桨式 推进式 开启涡轮式 机械工程学院毕业设计(论文 ) 第 8 页 共 45 页 轮尺寸计算 确定叶轮尺寸,由 2123拌器直径 D=( 1800 1800 =450 1350据直径系列选用 D=800叶数 Z=2 桨叶厚度 b=( D=800800=80240 b=120 示意图如图 图 搅拌器结构采用对开不可拆式平桨 ,用筋板焊接固定 ,如图 图 对于长径比大于 1的搅拌罐式液液反应器,采用单层叶轮不能得到良好的混合效果,功耗效率低。因此工业生产中常采用多层搅拌器。 多层搅拌器的互溶液体搅拌比单层叶轮要复杂得多,每层叶轮都产生各自不同机械工程学院毕业设计(论文 ) 第 9 页 共 45 页 的流型,总搅拌功率与单层叶轮的搅拌功率并没有简单的倍数关系,叶轮间距对多层叶轮的气液分散能力的影响很大,如果选择不当,功耗效率反而不如单层叶轮。本设计采用双层叶轮,叶轮形式同为桨式折页搅拌器。叶轮间距取 800本符合要求 。 拌器转速 搅拌器转速直接影响釜内流体的流动状态,根据经验,根据桨型和桨径,考虑到本次设计中搅拌罐内物料反应为酸碱反应,转速不必取得过大。取转速为85r/ 拌器附件 搅拌器附件通常指在搅拌罐内为了改善流动状态而增设的零件,如挡板,导流筒等,在某些场合,这些附件是不可缺少的。采用哪些附件要结合搅拌器的选型综合考虑,以达到预期的搅拌流动状态。导流筒几乎不影响混合时间,不能增大混合速度,导流筒增大系统流动阻力,在外加功率一定时减小速率,所以非十分必要时,一般不用导流筒。折流 板会使液体的流动阻力增大,并影响到搅拌器的功率。本次设计中反应器内物料反应物含腐蚀性液体,反应过程较为剧烈,因此不设置挡板或导流筒,以避免不必要的功率损耗。 1 4. 传动方式和选型 传动方式分为机械传动、电气传动、气压传动、液压传动 ,机械传动 擦轮传动、带传动、链条传动 ,齿轮传动 ,多点啮合柔性传动。带传动又分 楔带传动、平带传动、同步带传动等等 ;.设计的传动方式是 齿轮传动 。 机械工程学院毕业设计(论文 ) 第 10 页 共 45 页 拌功率及电动机选型 拌功率 影 响搅拌功率的因素很多,如搅拌器形状,尺寸和转速。搅拌物料的特性,釜体尺寸,搅拌附件结构以及搅拌器在釜内的位置都对搅拌功率产生影响。搅拌功率包含了搅拌器功率和搅拌作业功率。具有一定结构形状的设备中装有一定物性的液体,其中用一定形式的搅拌器以一定转速进行搅拌时,将对液体做功并使之发生流动,此时为搅拌器连续运转所需要的功率就是搅拌器功率。搅拌作业功率是把搅拌器使搅拌罐中的液体以最佳方式完成搅拌过程所需要的功率。若叶轮转速很低,在10的区域,仅叶轮周围的液体随叶轮旋转,而远离叶轮的液体是停滞的,因而混合效果很 差,混合时间也很长;当 加到大于 10,叶轮旋转产生的离心力就不可忽视了。此离心力产生了排出流量,使角速度传递到了远处的液体,这样远离叶轮的液体开始流动,混合大为改善,但在靠近叶轮上下部分仍然出现环形的停滞区域;当 轮式叶轮周围的液流变成湍流,停滞区消失。因此,叶轮转速应适当选取。搅拌功率准数 拌功率则按照下式计算: P= 35 d 式中 kg/r/采用 图计算功率因数 化工工艺设计手册 , 脂肪酸在 240C 的黏度 a s 密度 =8453m 搅拌转速 n=85r/s 2= 20 8 4 50 0 1 5 610 属于湍流区 查 中 m r/ / s 机械工程学院毕业设计(论文 ) 第 11 页 共 45 页 所需的搅拌功率为: P= 53 d =845 拌罐内有温度计套管和沿罐壁安装的蛇管 ,将引起搅拌功率的增加。 搅拌功率 P = P( 1+q) =( 1+=电动机选型 电动机功率除了满足搅拌器搅动液体所需的搅拌功率外,还要考虑轴封装置所产生的摩擦阻力以及传动装置所产生的功率损失。 电动机功率 传动方式是采用行星齿轮减速器, 轴封方式采用填料密封,其摩擦损失N 10%=动机功率为 = 7 拌设备选用电动机的问题,主要是确定系列,功率,转速以及安装测试和防爆要求等几项内容。 由机械设计手册表 16电动机型号为 定功率 额定电流 I=载转速 n=1420r/传递效率 % , 功率因数 传动比 i=1420/85=械工程学院毕业设计(论文 ) 第 12 页 共 45 页 拌轴轴封设计 机械搅拌反应器的轴封主要有两种:填料密封和机械密封。轴封的目的是避免介质通过转轴从搅拌容器内泄露或外部杂质渗入搅拌容器内。 机械密封由固定在轴上的动环及弹簧压紧装置,固定在设备上的静环以及辅助密封圈组成。机械密封的泄露率低,密封性能可靠,功耗小,使用寿命长,在搅拌反应器中得到广泛的应用。单端面的结构简单,制造容易,维修方便,应用广泛。双端面密封有两个密封面,且可在两密封面之间的空腔中注入中性液体,使其压力略大于介质的操作压力,起到堵封和润滑的双重作用,故密封效果好,但结构复杂,制 造拆装比较困难,需一套封液输送装置,且不便于维修。 表 密封面对象 压力等级( 使用温度() 最大线速度( m/s) 介质端材料 单端面 20150 3 碳素钢,不锈钢 双端面 20300 23 碳素钢,不锈钢 填料密封结构简单,制造容易,适用于非腐蚀性和弱腐蚀性的介质,密封要求不高,并允许定期维修的酯化釜。根据酯化釜的工作环境,介质性质等方面,物料具有弱腐蚀性,综合考虑选用填料密封。 拌器的结构与强度计算 搅拌器的强度计算主要是计算叶片的 厚度。它必须在决定了叶片的直径,宽度, 数量,并相应决定了搅拌器功率之后,对叶片进行结构设计。要分析叶片的受力状况,找出危险截面,然后用设计或校核的方法,决定叶片厚度。 关于叶轮离心力的问题,由于通常的叶轮端部线速不会超过 30m/s,所以离心力所引起的叶轮拉伸应力很小,设计中可以不计。 为了保证叶轮在腐蚀性介质,磨损性介质中工作的安全性,应该给叶轮尺寸增加腐蚀裕度。在难以定量确定腐蚀裕度时,可以将叶轮强度尺寸每边增大 1机械工程学院毕业设计(论文 ) 第 13 页 共 45 页 度计算中要用叶片去掉腐蚀裕度后的净面积,净厚度。 对于本设计中采用的桨式叶轮,在 强度计算时,以各叶片同样受力,各自作功相等来处理,这样,总的动力消耗除以叶片数即得到一个叶片的动力消耗。 叶轮强度计算中的计算功率: = kw 个叶片的危险截面都是端截面,该断面的弯矩值为: M=s j= =516( N m) r/ 折页桨式的 =62b (算,应力为 =M/W,也应满足校核公式 ,带入可得:6 = 701205166 =中 考虑叶片在腐蚀介质中工作,加上腐蚀裕量 4上圆整至 5 机械工程学院毕业设计(论文 ) 第 14 页 共 45 页 拌轴的设计 搅拌轴的计算主要包括轴的强度和刚度计算,以确定轴的最小截面尺寸,保证搅拌轴的安全平稳运转。 度计算 作用在轴上的力包括: 1)流体作用力 2)轴和叶轮自身重量的重力 3)由轴 和叶轮的组合质量偏心旋转中产生垂直于 轴心线的径向离心力,进而产生径向弯曲应力 4)如果是密闭搅拌压力容器,还作用有因容器内外压差引起轴横截面上 的轴向推力,产生轴向拉压和弯曲应力 5)传动装置传递的扭矩主要是传递流体作用力的切向合力矩,同时还包 括了克服支撑装置,密封装置等对轴摩擦损耗的附加扭矩,增加了轴中的扭转剪切力 由搅拌设备图 9力变化和分布可知,轴上每点应力是拉应力和剪应力的组合,故需用材料力学的方法进行强度校核。对于塑性材料有两种强度理论可以应用于屈服和疲劳失效,即最大剪应力 理论和剪应变能理论。工程上最大剪应变理论常被许多设计规范所采用,但其结果比较保守。此处采用剪应变能理论。其当量应力计算公式为: e= 22 3 于影响流体作用力的因素非常复杂,除用一定实验手段测得外,难有一种统一的计算方法,因此工程上提出的各种强度计算方法都要对条件进行简化。此处按照弯扭合成来计算轴的强度。 最大扭矩应大于叶轮产生的 扭矩,但轴的支撑装置和密封装置消耗的功率较小,可忽略不记,于是可认为轴传递的最大扭矩就是各层叶轮扭矩和。 机械工程学院毕业设计(论文 ) 第 15 页 共 45 页 Mt(= (9553000P0/n)=9553000 5=105( N Mt(作用在搅拌轴上的最大扭矩, N 0大弯矩是液体的作用力与每一层叶轮到下一个轴承之间距离乘积的总和 Mb( (式中nd 2 8 8 8 0 0 0, 图 L , 2L 的取值 N , mm : 1) 在混合操作时,其搅拌等级低于 7级 2) 正常的操作条件,即搅拌罐位于容器中心及叶轮不是长期在液面上操作 表 搅拌等级 说明 0 0级搅拌时气体跑空,化工过程中不用此级 1 2 1级和 2级搅拌适用于气体分散不是关键因素的工艺过程 2 级搅拌的能力为:搅拌器转速超过气体分散操作的临界转速,气体在液体中有较低水平的分散;可用于不受传质所限制的过程 机械工程学院毕业设计(论文 ) 第 16 页 共 45 页 3 5 3 5级搅拌适用于中等气体分散水平的工艺过程 5级搅拌的能力为可使细小气泡达到容器壁; 可使分散的气泡再循环到搅拌叶轮产生再循环 6 10 6 10级搅拌适用于需要快速传质的气液反应釜 10级搅拌能力为:可使气泡表面积达到最大程度; 可使分散的气泡再循环到搅拌叶轮产生再循环 显然,搅拌等级小于 7级, 材料 00许用剪应力 0许用拉应力 0 8 8 0 0 02 8 8 8 0 0 0 0 nd Mb(=(2888000 5 800) (800+2200)=105N mm ( m a x )( m a x )16 )()( M=( m a x )( m a x )( m a x )16 )4()(tb M=mm 刚度计算 为了防止转轴产生过大的扭转变形,以免在运转中引起振动造成轴封失效,对表面涂覆保护层的轴也为了防止由于过大变形造成涂覆层的破坏,所以因该将轴的扭转变形限制在一个允许的范围内。这就是设计中的扭转刚度条件,为此,搅拌轴要进行刚度计算,工程上以单位长度的比扭转角 作为扭转的刚度条件。 = 10 30 式中 /m) 机械工程学院毕业设计(论文 ) 第 17 页 共 45 页 料 00=75000n=85r/N= =,由刚度有: d= 1 . 9 50 . 5 7 5 0 0 0 8 5= 许用剪切力a=40 搅拌扭 矩 740m 不稳定力 33用于轴的弯矩 ( c) 10 p= 200 ( c) 10 =( 3102200 =m M= m 搅拌扭矩 T 2222 24 m =设计载荷的考虑 除了通常按正常条件确定搅拌轴的设计载荷外,不可忽略在一些特殊操作状况下引起设计载荷的变化和增大,设计必须充分注意到这些 可能遇到的特殊情况,从而加大设计载荷或采 用必要的防止措施。这些特殊情况主要是指一些影响流体作用力急剧变化的因素。 叶轮在埋入固体沉淀层中的启动 在叶轮运转中向搅拌容器内进料或排放,会使流体作用力增大 叶轮浸入液体的深度不够,可能会引起流体的流动形态发生变化,变 机械工程学院毕业设计(论文 ) 第 18 页 共 45 页 得很不稳定并加大了流体作用力。 进入液层中的流体进口位置应远离叶片 启动扭矩的影响 在以前的设计计算中都没有考虑到轴上键槽,销孔等对轴截面削弱的影响,现规定如下: 终直径比计算直径大 4%5%; 开 有两个键槽或浅孔时,最终直径比计算直径大 7%10%; 径按计算直径增大 15%以上。 如按照刚度条件计算的轴径比之强度条件计算者大许多,那么可考虑选择较低强度的材料制作搅拌轴。 综上,由 0 化釜筒体设计 圆柱形容器是最常见的一种压力容器结构形式,具有结构简单,易于制造,便于在内部装设附件等优点,被广泛的用作反应器,换热器,分离器和中小容积存储容器。圆筒形容器的容积主要由圆柱形筒体提供。圆筒可分为单层式和组合 式两大类。本设计中的搅拌反应器属于低压容器范围,选用单层式圆筒即可。 设计压力 P= 设计温度 t=230 盛装介质脂肪酸,醇均为无毒液体,搅拌器内为常压,因此本搅拌罐为第三类压力容器。选用材料 00用应力 7 0 M P a ,屈服极限130s M 。 为焊接接头系数,此处 焊接接头型式采用双面焊, 100%全部无损检测, 取 液柱产 生的静压力 P 8 4 5 9 . 8 2 . 4 6 5l =大于设计压力的 5%,故应计入计算压力中,则计算压力 P 0 . 0 2 0 . 1 3c p 。 机械工程学院毕业设计(论文 ) 第 19 页 共 45 页 计算厚度 0 . 1 3 1 8 0 0 1 . 6 72 2 7 0 1 . 0 0 . 1 3 对于搅拌压力容器,规定不包括腐蚀裕量的最小厚度不小于 3刚板厚度负偏差 肪酸为腐蚀性液体,取腐蚀裕量 6 设计厚度 2 1 . 6 7 6 7 . 6 7d C m m 名义厚度 1 7 . 6 7 0 . 8 8 . 4 7 m m 取n=10查n=10 t 没有变化,故取名义厚度 n=10 有效厚度e=n大允许工作压力 Pw= 2 = 2 7 0 1 . 0 3 . 21 8 0 0 3 . 2 =c 计算应力 t =P 2 )(= 0 . 1 3 (1 8 0 0 3 . 2 )2 3 . 2 1 . 0=校核:实验压力系数为 验压力 =验时薄膜应力t=P 2 )(= 0 . 1 3 7 5 ( 1 8 0 0 3 . 2 )2 3 . 2 1 . 0=1 本搅拌罐 800计温度 230,设计压力 据 意图如图 图 尺寸如下 : 00 S=4 b=30 2 D=515 80 10 H=318 A=280 L=280 d=18 螺栓螺母数量 20 直径 长度 =85 机械工程学院毕业设计(论文 ) 第 22 页 共 45 页 便于放净罐体内液体,在罐底开有放净口 110,并设置凸缘。见装配图。 管孔开在罐体一侧,管径大小取 0,规格为 23 接管材料采用 00 81637 管法兰据 0592兰材料选用00 法兰结构如图 图 尺寸如下 : 7 D=165 K=125 L=18 n=4 16 9 C=20 R=8 法兰密封据 密封材料为石棉橡胶垫。与筒体焊接见图纸。 机械工程学院毕业设计(论文 ) 第 23 页 共 45 页 孔补强 等面积补强法是以无穷大平板上开小孔的孔边应力分析作为其理论依据。但实际的开孔接管是位于壳体而不是平板上,壳体总有一定的曲率,为减少实际应力集中系数与理论分析结果之间的差异,必须对开孔的尺寸和形状给予一定的限制。 圆筒上开孔的限制,当其内径 1500,开孔最大直径 d 1/2 且 d 520其内径 1500孔最大直径 d 1/3 d 1000 凸形封头或球壳上开孔最大直径 d 1/2 锥壳或锥形封头上开孔最大直径 d 1/3 对受内压的圆筒或球壳,所需要的补强面积 A=2 式中 mm mm 于设计温度下接管材料与壳体材料许用应力之比,大于 1时,取 。 补强材料一般与壳体材料相同,若补强材料 许用应力小于壳体材料许用应力,则补强面积按照壳体材料与补强材料许用应力之比而增加。若补强材料许用应力大于壳体材料许用应力,则所需补强面积不得减少。 根据等面积补强设计准则,开孔所需最小补强面积主要由确定,这里的为按照开孔处的最大应力计算得到的计算厚度。对于内压圆筒上的开孔,为按照周向应力计算而得到的计算厚度。当在内压椭圆封头或内压碟形封头上开孔时,则应区分不同的开孔位置取不同的计算厚度。这是由于常规设计中,内压椭圆形封头和内压碟形封头的计算厚度都是由转角过渡区的最大应力确定的,而 中心部位的应力机械工程学院毕业设计(论文 ) 第 24 页 共 45 页 则比转角过渡区的应力要小,因而所需要的计算厚度也较小。 具体接管方位见搅拌罐总装图。 由于 开孔以后,除削弱器壁的强度外,在壳体和接管的连接处,因结构的连续性被破坏,回产生很高的局部应力,给容器的安全操作带来隐患,因此压力容器设计必须充分考虑开孔补强的问题。压力容器接管补强结构通常采用局部补强结构,主要有: 其中补强圈补强是中低压容器应用最多的补强结构,补强圈贴焊在壳体与接管连接处,它结构简单,制造方便,使用经验丰富 ,但补强圈与壳体金属之间不能完全贴合,传热效果差,在中温以上使用时二者存在较大的热膨胀差,因而使补强圈局部区域产生较大的温差应力;此外补强圈与壳体用搭接联结,难以与壳体形成整体,所以抗疲劳性能差。一般用在静载,常温,中低压,材料的标准抗拉强度低于540强圈厚度小于或等于 名义厚度不大于 38 补强准则采用等面积补强:即认为壳体因开孔被削弱的承载面积,须有补强材料在离孔边一定距离范围内予以等面积补偿。该方法是以双向受拉伸的无限大平板上开有小孔时孔边的应力集中作为理论 基础的,即仅考虑壳体中的拉伸薄膜应力,且以补强壳体的一次应力强度作为设计准则,故对小直径的开孔安全可靠。 在设计压力小于或等于 相邻开孔中心的间距(对曲面间距以弧长计算)大于两孔直径之和的两倍,且接管公称外径小于或等于 89要接管最小厚度满足下表 可以不另行补强。 表 管最小厚度 接管公称外径 25 32 38 45 48 57 65 76 89 最小厚度 据上表,可知各孔不需要另行补强。 机械工程学院毕业设计(论文 ) 第 25 页 共 45 页 速器 、联轴器和机架选用 釜用变速机主要型式有:谐波减速机,摆线针齿行星减速机,两级齿轮减速机,三角皮带减速机。其中最常用的是固定和可移动的齿轮减速搅拌器,但由于只有一个轴承所以需要设置底轴承,也不能用在有防火防爆要求的场合。根据机械设计手册,选用 机型号 动比 17 d(55 b=16 h=59 e=79 0 G=74 F=41 0 3 5 R=4 40 10 D3(h)=270 19 H=398 E=20 10 1 由机械设计手册,选用 刚性凸缘联轴器,型号 料为 寸详见图 机械工程学院毕业设计(论文 ) 第 26 页 共 45 页 图 T 型刚性凸缘联轴器 由机械设计手册选用型号为 机架,尺寸见 所示: 图 机械工程学院毕业设计(论文 ) 第 27 页 共 45 页 热部件设计 在筒体外侧,以焊接连接或法兰连接的方法装设各种形状的钢结构,使其与筒体的外表面形成密闭的空间,在此空间内通入载热流体,以加热或冷却物料,维持物料的温度在预定的范围内,这种钢结构统称为夹套。本次设计物料反应温度为240C ,要求较高,罐体外侧半圆管夹套 89 4,材料为 00以150C , 体内设置蛇管, 57 料同为 00热部件连接方式及尺寸见总装图。 盖及底座结构设计 搅拌罐顶盖在受压状态下操作常采用椭圆形。设计时一般先算出顶盖承受操作压力所需要的
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。