2014高考文科数学分类汇编——数列.doc_第1页
2014高考文科数学分类汇编——数列.doc_第2页
2014高考文科数学分类汇编——数列.doc_第3页
2014高考文科数学分类汇编——数列.doc_第4页
2014高考文科数学分类汇编——数列.doc_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数列D1 数列的概念与简单表示法17、2014江西卷 已知数列an的前n项和Sn,nN*.(1)求数列an的通项公式;(2)证明:对任意的n1,都存在mN*,使得a1,an,am成等比数列18、2014江西卷 已知函数f(x)(4x24axa2),其中a1,都存在mN*,使得a1,an,am成等比数列18、2014江西卷 已知函数f(x)(4x24axa2),其中a0.(1)当a4时,求f(x)的单调递增区间;(2)若f(x)在区间1,4上的最小值为8,求a的值82014全国卷 设等比数列an的前n项和为Sn.若S23,S415,则S6()A31 B32 C63 D6452014新课标全国卷 等差数列an的公差为2,若a2,a4,a8成等比数列,则an的前n项和Sn()An(n1) Bn(n1) C. D.192014山东卷 在等差数列an中,已知公差d2,a2是a1与a4的等比中项(1)求数列an的通项公式;(2)设bna,记Tmb1b2b3b4(1)nbn,求Tn.16、2014陕西卷 ABC的内角A,B,C所对的边分别为a,b,c.(1)若a,b,c成等差数列,证明:sin Asin C2sin(AC);(2)若a,b,c成等比数列,且c2a,求cos B的值20、2014天津卷 已知q和n均为给定的大于1的自然数,设集合M0,1,2,q1,集合Ax|xx1x2qxnqn1,xiM,i1,2,n(1)当q2,n3时,用列举法表示集合A.(2)设s,tA,sa1a2qanqn1,tb1b2qbnqn1,其中ai,biM,i1,2,n.证明:若anbn,则st.16、2014重庆卷 已知an是首项为1,公差为2的等差数列,Sn表示an的前n项和(1)求an及Sn;(2)设bn是首项为2的等比数列,公比q满足q2(a41)qS40,求bn的通项公式及其前n项和Tn.D4数列求和15、2014北京卷 已知an是等差数列,满足a13,a412,数列bn满足b14,b420,且bnan为等比数列(1)求数列an和bn的通项公式;(2)求数列bn的前n项和16、2014湖南卷 已知数列an的前n项和Sn,nN*.(1)求数列an的通项公式;(2)设bn2an(1)nan,求数列bn的前2n项和17、2014全国新课标卷 已知an是递增的等差数列,a2,a4是方程x25x60的根(1)求an的通项公式;(2)求数列的前n项和19,2014山东卷 在等差数列an中,已知公差d2,a2是a1与a4的等比中项(1)求数列an的通项公式;(2)设bna,记Tmb1b2b3b4(1)nbn,求Tn. D5 单元综合182014安徽卷 数列an满足a11,nan1(n1)ann(n1),nN*.(1)证明:数列是等差数列;(2)设bn3n,求数列bn的前n项和Sn.192014广东卷 设各项均为正数的数列an的前n项和为Sn,且Sn满足S(n2n3)Sn3(n2n)0,nN*.(1)求a1的值;(2)求数列an的通项公式;(3)证明:对一切正整数n,有.19、2014湖北卷 已知等差数列an满足:a12,且a1,a2,a5成等比数列(1)求数列an的通项公式(2)记Sn为数列an的前n项和,是否存在正整数n,使得Sn60n800?若存在,求n的最小值;若不存在,说明理由202014江苏卷 设数列an的前n项和为Sn.若对任意的正整数n,总存在正整数m,使得Snam,则称an是“H数列”(1)若数列an的前n项和Sn2n(n),证明:an是“H数列”(2)设an是等差数列,其首项a11,公差d1,都存在mN*,使得a1,an,am成等比数列18、2014江西卷 已知函数f(x)(4x24axa2),其中a0.(1)当a4时,求f(x)的单调递增区间;(2)若f(x)在区间1,4上的最小值为8,求a的值19、2014四川卷 设等差数列an的公差为d,点(an,bn)在函数f(x)2x的图像上(nN*)(1)证明:数列bn为等比数列;(2)若a11,函数f(x)的图像在点(a2,b2)处的切线在x轴上的截距为2,求数列anb的前n项和Sn.答案:D117解:(1)由Sn,得a1S11.当n2时,anSnSn13n2,a1也符合上式,所以数列an的通项公式为an3n2.(2)证明:要使得a1,an,am成等比数列,只需要aa1am,即(3n2)21(3m2),即m3n24n2.而此时mN*,且mn,所以对任意的n1,都存在mN*,使得a1,an,am成等比数列18解:(1)当a4时,由f(x)0得x或x2,由f(x)0得x或x(2,)故函数f(x)的单调递增区间为和(2,)(2)因为f(x),a0,所以由f(x)0得x或x.当x时,f(x)单调递增;当x时,f(x)单调递减;当x时,f(x)单调递增易知f(x)(2xa)20,且f0.当1,即2a0时,f(x)在1,4上的最小值为f(1),由f(1)44aa28,得a22,均不符合题意当14时,即8a2时,f(x)在1,4时的最小值为f0,不符合题意当4时,即a8时,f(x)在1,4上的最小值可能在x1或x4时取得,而f(1)8,由f(4)2(6416aa2)8得a10或a6(舍去)当a10时,f(x)在(1,4)上单调递减,f(x)在1,4上的最小值为f(4)8,符合题意综上有,a10.16.D22B5D15解:(1)设等差数列an的公差为d,由题意得d3.所以ana1(n1)d3n(n1,2,)设等比数列bnan的公比为q,由题意得q38,解得q2.所以bnan(b1a1)qn12n1.从而bn3n2n1(n1,2,)(2)由(1)知bn3n2n1(n1,2,)数列3n的前n项和为n(n1),数列2n1的前n项和为12n1,所以,数列bn的前n项和为n(n1)2n1.17解:(1)设an的公比为q,依题意得解得因此,an3n1.(2)因为bnlog3ann1,所以数列bn的前n项和Sn.19解:(1)设数列an的公差为d,依题意知,2,2d,24d成等比数列,故有(2d)22(24d),化简得d24d0,解得d0或d4,当d0时,an2;当d4时,an2(n1)44n2,从而得数列an的通项公式为an2或an4n2.(2)当an2时,Sn2n,显然2n60n800成立当an4n2时,Sn2n2.令2n260n800,即n230n4000,解得n40或n60n800成立,n的最小值为41.综上,当an2时,不存在满足题意的正整数n;当an4n2时,存在满足题意的正整数n,其最小值为41.16.解:(1)当n1时,a1S11;当n2时,anSnSn1n.故数列an的通项公式为ann.(2)由(1)知,bn2n(1)nn.记数列bn的前2n项和为T2n,则T2n(212222n)(12342n)记A212222n,B12342n,则A22n12,B(12)(34)(2n1)2nn.故数列bn的前2n项和T2nAB22n1n2.13.9D17解:(1)由an22an1an2,得an2an1an1an2,即bn1bn2.又b1a2a11,所以bn是首项为1,公差为2的等差数列(2)由(1)得bn12(n1),即an1an2n1.于是所以an1a1n2,即an1n2a1.又a11,所以an的通项公式ann22n2.5A17解:(1)方程x25x60的两根为2,3.由题意得a22,a43.设数列an的公差为d,则a4a22d,故d,从而得a1.所以an的通项公式为ann1.(2)设的前n项和为Sn,由(1)知,则Sn,Sn,两式相减得Sn,所以Sn2.19解:(1)由题意知,(a1d)2a1(a13d),即(a12)2a1(a16),解得a12.故数列an的通项公式为an2n.(2)由题意知,bnan(n1),所以Tn122334(1)nn(n1)因为bn1bn2(n1),所以当n为偶数时,Tn(b1b2)(b3b4)(bn1bn)48122n,当n为奇数时,TnTn1(bn)n(n1).所以Tn16解: (1)a,b,c成等差数列,ac2b.由正弦定理得sin Asin C2sin B.sin Bsin(AC)sin(AC),sin Asin C2sin(AC)(2)由题设有b2ac,c2a,ba.由余弦定理得cos B.19解:(1)证明:由已知得,bn2an0,当n1时,2an1an2d.故数列bn是首项为2a1,公比为2d的等比数列(2)函数f(x)2x在点(a2,b2)处的切线方程为y2a2(2a2ln 2)(xa2),其在x轴上的截距为a2.由题意知,a22,解得a22,所以da2a11,ann,bn2n,anbn4n.于是,Sn14242343(n1)4n1n4n,4Sn142243(n1)4nn4n1,因此,Sn4Sn4424nn4n1n4n1,所以,Sn.19解:(1)由题意知(2a1d)(3a13d)36,将a11代入上式解得d2或d5.因为d0,所以d2.从而an2n1,Snn2(nN*)(2)由(1)得amam1am2amk(2mk1)(k1),所以(2mk1)(k1)65.由m,kN*知2mk1k11,故所以16解:(1)因为an是首项a11,公差d2的等差数列,所以ana1(n1)d2n1.故Sn13(2n1)n2.(2)由(1)得a47,S416.因为q2(a41)qS40,即q28q160,所以(q4)20,从而q4.又因为b12,bn是公比q4的等比数列,所以bnb1qn124n122n1.从而bn的前n项和Tn(4n1)D312.17解:(1)设an的公比为q,依题意得解得因此,an3n1.(2)因为bnlog3ann1,所以数列bn的前n项和Sn13519解:(1)设数列an的公差为d,依题意知,2,2d,24d成等比数列,故有(2d)22(24d),化简得d24d0,解得d0或d4,当d0时,an2;当d4时,an2(n1)44n2,从而得数列an的通项公式为an2或an4n2.(2)当an2时,Sn2n,显然2n60n800成立当an4n2时,Sn2n2.令2n260n800,即n230n4000,解得n40或n60n800成立,n的最小值为41.综上,当an2时,不存在满足题意的正整数n;当an4n2时,存在满足题意的正整数n,其最小值为41.7417解:(1)由Sn,得a1S11.当n2时,anSnSn13n2,a1也符合上式,所以数列an的通项公式为an3n2.(2)证明:要使得a1,an,am成等比数列,只需要aa1am,即(3n2)21(3m2),即m3n24n2.而此时mN*,且mn,所以对任意的n1,都存在mN*,使得a1,an,am成等比数列18解:(1)当a4时,由f(x)0得x或x2,由f(x)0得x或x(2,)故函数f(x)的单调递增区间为和(2,)(2)因为f(x),a0,所以由f(x)0得x或x.当x时,f(x)单调递增;当x时,f(x)单调递减;当x时,f(x)单调递增易知f(x)(2xa)20,且f0.当1,即2a0时,f(x)在1,4上的最小值为f(1),由f(1)44aa28,得a22,均不符合题意当14时,即8a2时,f(x)在1,4时的最小值为f0,不符合题意当4时,即a8时,f(x)在1,4上的最小值可能在x1或x4时取得,而f(1)8,由f(4)2(6416aa2)8得a10或a6(舍去)当a10时,f(x)在(1,4)上单调递减,f(x)在1,4上的最小值为f(4)8,符合题意综上有,a10.8C解析 设等比数列an的首项为a,公比为q,易知q1,根据题意可得解得q24,1,所以S6(1)(143)63.5A解析 由题意,得a2,a24,a212成等比数列,即(a24)2a2(a212),解得a24,即a12,所以Sn2n2n(n1)19解:(1)由题意知,(a1d)2a1(a13d),即(a12)2a1(a16),解得a12.故数列an的通项公式为an2n.(2)由题意知,bnan(n1),所以Tn122334(1)nn(n1)因为bn1bn2(n1),所以当n为偶数时,Tn(b1b2)(b3b4)(bn1bn)48122n,当n为奇数时,TnTn1(bn)n(n1).所以Tn16解: (1)a,b,c成等差数列,ac2b.由正弦定理得sin Asin C2sin B.sin Bsin(AC)sin(AC),sin Asin C2sin(AC)(2)由题设有b2ac,c2a,ba.由余弦定理得cos B.20解:(1)当q2,n3时,M0,1,Ax|xx1x22x322,xiM,i1,2,3,可得A0,1,2,3,4,5,6,7(2)证明:由s,tA,sa1a2qanqn1,tb1b2qbnqn1,ai,biM,i1,2,n及anbn,可得st(a1b1)(a2b2)q(an1bn1)qn2(anbn)qn1(q1)(q1)q(q1)q n2qn1qn110,所以st.16解:(1)因为an是首项a11,公差d2的等差数列,所以ana1(n1)d2n1.故Sn13(2n1)n2.(2)由(1)得a47,S416.因为q2(a41)qS40,即q28q160,所以(q4)20,从而q4.又因为b12,bn是公比q4的等比数列,所以bnb1qn124n122n1.从而bn的前n项和Tn(4n1)D415解:(1)设等差数列an的公差为d,由题意得d3.所以ana1(n1)d3n(n1,2,)设等比数列bnan的公比为q,由题意得q38,解得q2.所以bnan(b1a1)qn12n1.从而bn3n2n1(n1,2,)(2)由(1)知bn3n2n1(n1,2,)数列3n的前n项和为n(n1),数列2n1的前n项和为12n1,所以,数列bn的前n项和为n(n1)2n1.16.解:(1)当n1时,a1S11;当n2时,anSnSn1n.故数列an的通项公式为ann.(2)由(1)知,bn2n(1)nn.记数列bn的前2n项和为T2n,则T2n(212222n)(12342n)记A212222n,B12342n,则A22n12,B(12)(34)(2n1)2nn.故数列bn的前2n项和T2nAB22n1n2.17解:(1)方程x25x60的两根为2,3.由题意得a22,a43.设数列an的公差为d,则a4a22d,故d,从而得a1.所以an的通项公式为ann1.(2)设的前n项和为Sn,由(1)知,则Sn,Sn,两式相减得Sn,所以Sn2.19解:(1)由题意知,(a1d)2a1(a13d),即(a12)2a1(a16),解得a12.故数列an的通项公式为an2n.(2)由题意知,bnan(n1),所以Tn122334(1)nn(n1)因为bn1bn2(n1),所以当n为偶数时,Tn(b1b2)(b3b4)(bn1bn)48122n,当n为奇数时,TnTn1(bn)n(n1).所以TnD518解: (1)证明:由已知可得1,即1,所以是以1为首项,1为公差的等差数列(2)由(1)得1(n1)1n,所以ann2,从而可得bnn3n.Sn131232(n1)3n1n3n,3Sn132233(n1)3nn3n1.得2Sn31323nn3n1n3n1,所以Sn.19解:(1)设数列an的公差为d,依题意知,2,2d,24d成等比数列,故有(2d)22(24d),化简得d24d0,解得d0或d4,当d0时,an2;当d4时,an2(n1)44n2,从而得数列an的通项公式为an2或an4n2.(2)当an2时,Sn2n,显然2n60n800成立当an4n2时,Sn2n2.令2n260n800,即n230n4000,解得n40或n60n800成立,n的最小值为41.综上,当an2时,不存在满足题意的正整数n;当an4n2时,存在满足题意的正整数n,其最小值为41.20解: (1)证明:由已知,当n1时,an1Sn1Sn2n12n2n.于是对任意的正整数n,总存在正整数mn1,使得Sn2nam,所以an是“H数列”(2)由已知得,S22a1d2d.因为an是“H数列”,所以存在正整数m,使得S2am,即2d1(m1)d,于是(m2)d1.因为d0,所以m20,故m1,从而d1.当d1时,an2n,Sn是小于2的整数,nN*.于是对任意的正整数n,总存在正整数m2Sn2,使得Sn2mam,所以an是“H数列”,因此d的值为1.(3)证明:设等差数列an的公差为d,则an a1(n1)dna1(n1)(da1)(nN*)令bnna1,cn(n1)(da1),则anbncn(nN*)下证bn是“H数列”设bn的前n项和为Tn,则Tna1(nN*)于是对任意的正整数n,总存在正整数m,使得Tnbm,所以bn是“H数列”同理可证cn也是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论