第二章__发电厂的回热加热系统_第1页
第二章__发电厂的回热加热系统_第2页
第二章__发电厂的回热加热系统_第3页
第二章__发电厂的回热加热系统_第4页
第二章__发电厂的回热加热系统_第5页
已阅读5页,还剩67页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章发电厂的回热加热系统 第一节回热加热器的类型 第三节给水除氧及除氧器 第二节表面式加热器系统的热经济性 第四节除氧器的运行及其热经济性分析 第五节汽轮机组原则性热力系统计算 第一节回热加热器的类型 回热系统既是汽轮机热力系统的基础 也是全厂热力系统的核心 它对机组和电厂的热经济性起着决定性的作用 一 回热加热器的分类 1 混合式加热器的结构 按受热面布置方式 卧式 换热效果好 热经济性高于立式 一般大容量机组采用 立式 占地面积小 便于安装和检修 为中 小机组和部分大机组采用 二 混合式加热器 按照内部汽 水接触方式的不同分为 混合加热器 表面式加热器 2 系统连接 一方面凝结水需依靠水泵提高压力后才能进入比凝汽器压力高的混合式加热器内 另一方面为防止输送饱和水的水泵发生汽烛 水泵应有正的吸入水头 需设置一水箱安装在适当高度 混合式比表面式系统复杂 导致运行安全性 可靠性低 系统投资大 混合式加热器可以兼作除氧设备使用 避免高温金属受热面氧腐蚀 根据技术经济全面综合比较 绝大多数电厂都选用了热经济性较差的面式加热器组成回热系统 只有除氧器采用混合式 以满足给水除氧的要求 3 特点 混合式可以将水加热到该级加热器蒸汽压力下所对应的饱和水温度 充分利用了加热蒸汽的能位 热经济性较表面式加热器高 混合式加热器结构简单 金属耗量少 造价低 便于汇集各种不同参数的汽 水流量 4 国外混合式加热器系统 1 表面式加热器的结构 三 表面式加热器 电厂最常用的是U形管管板式加热器 2 表面式加热器的特点及系统连接 1 特点 有端差存在 热经济性较混合式加热器差 金属消耗量大 结构复杂 造价高 不能除去水中的氧气和其它气体 表面式加热器组成的系统简单 运行安全可靠 布置方便 系统投资和土建费用少 2 系统连接 第二节表面式加热器及系统的热经济性 1 上端差 出口端差 加热器汽侧压力下的饱和温度与加热器水侧出口水温之差 即 一 表面式加热器的端差 注 若无特殊说明 端差是指上端差 加热器若有疏水冷却器 对下端差而言 tsj指疏水冷却器出水温度 1 端差的定义 2 下端差 入口端差 加热器汽侧压力下的饱和温度与加热器水侧进口水温之差 即 端差的存在 使加热器出水温度降低 从而使高压抽汽量加大 低压抽汽量减少 使回热抽汽做功比Xr i 分析 其它条件不变 传热系数K 换热面积A 的选定主要取决于钢煤的比价 一般无过热蒸汽冷却段时 3 6 有过热蒸汽冷却段时 1 2 2 端差对机组热经济性的影响 3 影响端差的因素 抽汽管道压降指汽轮机抽汽口压力Pj和j级回热加热器内汽侧压力Pj 之差 即 抽汽压降 Pj加大 则Pj tsj随之减小 引起加热器出口水温twj降低 使整机回热抽汽做功比Xr i 3 影响抽汽管道压降的因素及选择抽汽压降 Pj与蒸汽在管内的流速 局部阻力 阀门 管道附件的数量 类型 开度 及管道的长短有关 Pj选取要通过技术经济比较而定 一般表面加热器的抽汽管道压降 Pj 10 Pj 对大型机组 可取 4 6 Pj 二 抽汽管道压降 Pj及热经济性 2 抽汽管道压降对机组热经济性的影响 1 抽汽管道压降的计算 1 蒸汽冷却器的作用降低抽汽的过热度 减小加热器因温差换热在所引起的不可逆损失 同时可提高加热器的出水温度 以改善回热系统的热经济性 内置式 也称为过热蒸汽冷却段 它实际上是在加热器内隔离出一部分加热面积 使加热蒸汽先流经该段加热面 它只提高的是本级加热器出口水温 外置式 是一个独立的换热器 既可减小本级加热器的端差 又可提高最终给水温度 降低机组热耗 提高热经济性 蒸汽冷却器 3 蒸汽冷却器提高热经济性原因分析 1 火用方法 做功能力损失法 内置式 同上面所讲的作用 外置式 除上面作用外 还可提高锅炉给水温度 减小锅炉换热温差不可逆损失 另一方面 不论是哪种类型 都使蒸汽温度降低 减小了加热器内的换热温差所造成的不可逆损失 三 蒸汽冷却器及热经济性分析 2 蒸汽冷却器的类型 2 热量法内置式 提高了该加热器的出口水温 使得该加热器的抽汽量加大 高一级回热抽汽量减小 Xr i 外置式 除上面作用外 还提高给水温度 使Xr进一步提高 i增加更多 4 蒸汽冷却器的连接方式 2 并联蒸汽冷却器蒸汽侧连接较简单 水侧的连接方式不同 主要有串联和并联 串联指全部给水流经冷却器 如图2 14中 b d e f 所示 并联连接只有部分给水进入冷却器 离开冷却器的给水再与主水流混合后送往锅炉 如图2 14中 a 和 c 所示 1 内置式蒸汽冷却器通常水侧连接为顺序连接 如图2 12所示 3 外置式蒸汽冷却器两种连接方式的比较 串联方式优点 蒸汽冷却器的进水温度高 与蒸汽换热平均温差小 冷却器内火用损少 效益较显著 缺点 主水流全部通过冷却器 给水系统的阻力增大 泵功消耗多 并联方式优点 主水流中分了一部分到冷却器 给水系统的阻力小 泵功可减小 缺点 进入较高压力加热器的水量减少 相应的回热抽汽量减小 回热抽汽做功减少 热经济性稍逊于串联式 进入冷却器的水温较低 换热温差较大 冷却器内火用损稍大 蒸汽冷却器是提高大容量 高参数机组热经济性的有效措施 四 表面式加热器的疏水方式及热经济性分析 疏水 加热蒸汽进入表面式加热器放热后 冷凝而成的凝结水 疏水收集方式有两种 疏水逐级自流方式 利用相邻表面式加热器汽侧压差 将压力较高的疏水自流到压力较低的加热器中 如图2 15所示 带疏水泵的疏水系统 如图2 16所示 图2 16表面式加热器采用疏水泵方式 图2 15表面式加热器采用逐级自流方式 1 疏水方式 2 两种疏水方式的比较 1 疏水逐级自流高加疏水逐级自流 最后汇于除氧器 低加疏水逐级自流 最后汇于凝汽器 如图2 15所示 国产300MW及以上机组中采用 优点 系统简单可靠 无需疏水泵 投资省 也不耗厂用电 便于运行维护 缺点 热经济性较差 如图2 17所示 热量法 排挤低压抽汽 低压抽汽量减少 Xr i 还使冷源损失增大 火用方法 简要说明 措施 加装疏水冷却器 2 带疏水泵的疏水系统如图2 16所示 优点 避免了对低压抽汽的排挤 避免了附加冷源热损失 热经济性较高 缺点 系统复杂 需设置疏水泵 投资大 运行中耗电 可靠性较差 维护工作量大 国产125MW机组和200MW机组仅在次末级低加上采用 3 疏水冷却段 器 及其热经济性 将加热器中疏水出口水温降低后再排至压力较低的j 1级加热器中 可减少对低压抽汽的排挤 即高压抽汽量减少 低压抽汽量增大 Xr i 1 疏水冷却的种类分为内置式疏水冷却器和外置式疏水冷却器两种 内置式疏水冷却器又称为疏水冷却段 外置式疏水冷却器如图2 19所示 从热量法分析 从做功能力法分析 加装疏水冷却段 器 后 加热蒸汽在j级加热器中的放热过程平均温度降低了 如图2 18中 d 蒸汽放热过程由1 3 2变为1 3 2 换热温差由 Tr降为 Tr 熵增由 s减为 s 火用损减少 erj Ten s 故热经济性获得改善 2 热经济性分析 五 实际机组回热原则性热力系统 一般系统都采用一台混合式加热器作为除氧器 将回热加热器分为高压加热器组和低压加热器组 高压加热器疏水逐级自流进入除氧器 低压加热器疏水也采用逐级自流方式进入凝汽器热井或在末级或次末级加热器采用疏水泵将疏水打入加热器出口水管道中 300MW及以上机组的回热系统 通常高压加热器全部采用内置式蒸汽冷却段 高低压加热器全部都有内置式疏水冷却段 疏水采用逐级自流方式 我国200MW及以下机组 通常配电动给水泵 300MW及以上机组通常配电动给水泵和汽动给水泵 机组正常运行中 汽动给水泵运行 电动给水泵作为备用或启动用 第三节给水除氧及除氧器 一 给水除氧的必要性 水中含有溶解的活性气体 特别是氧气 与金属发生化学反应 使金属表面遭到腐蚀 另外这些气体也影响换热器的换热效果 影响机组运行的安全性和经济性 二 给水除氧方法 给水除氧有化学除氧和物理除氧两种方法 化学除氧 化学除氧是向水中加入化学药剂 使水中溶解氧与它产生化学反应生成无腐蚀性的稳定化合物 达到除氧的目的 该法能彻底除氧 但不能除去其它气体 且价格较贵 还会生成盐类 电厂中较少单独采用 物理除氧 物理除氧是借助于物理手段 将水中溶解氧和其他气体除掉 并且水中无任何残留物质 火电厂中应用最普遍的物理除氧是热力除氧法 热力除氧价格低廉 不但可除去水中的氧气 同时可除去水中的其它气体 而且不会产生其它残留物质 同时还可作为一台加热器 三 热力除氧原理 热力除氧原理是建立在亨利定律和道尔顿定律基础上 1 亨利定律一定温度条件下 单位体积水中溶解的气体量b与水面上该气体的分压力pb成正比 其关系式为 K为溶解度系数 如图2 22所示 2 道尔顿分压定律 混合气体的全压力等于各组成气 汽 体分压力之和 热力除氧原理 对水定压加热 温度上升 水蒸发加深 水蒸气的分压力Ps加大 溶于水中的其他气体的分压力减少 由道尔顿分压定律知 当水被加热到饱和温度 Ps接近或等于P时 其它气体的分压力趋向于零 再由亨利定律知水其它气体就会自动逸出水面 从而达到除氧的目的 保证热力除氧效果的基本条件 水应该被加热到除氧器工作压力下的饱和温度 必须把水中逸出的气体及时排走 以保证液面上氧气及其他气体分压力维持为零或最小 被除氧的水与加热蒸汽应有足够的接触面积 蒸汽与水应逆向流动 确保有较大的不平衡压差 初期除氧阶段此时水中有大量溶解气体 不平衡压差 P较大 通过加热给水 气体以小气泡的形式克服水的黏滞力和表面张力离析出来 此阶段大致可除去80 90 的气体 气体自水中逸出的传质过程可分为两个阶段 深度除氧阶段给水中还残留少量气体 P很小 气体难以克服水的黏滞力和表面张力逸山 只有靠单个分子的扩散作用慢慢离析出水面 此过程扩散速度很慢 往往还辅之以化学除氧 四 热力除氧器类型及结构 除氧器包括 除氧塔 除氧头 给水箱 给水除氧主要是在除氧塔中进行 因此主要对除氧塔进行介绍 1 除氧器的类型及选择 按结构分 根据水在除氧塔内的播散方式 淋水盘 细流 式 喷雾填料 喷雾膜式 式 按除氧器内压力大小分 真空式 大气压式和高压式除氧器 按除氧塔的布置方式分 立式 卧式除氧器 是借助于凝汽器内的高真空 在凝汽器底部两侧布置适当的除氧装置 如图2 24所示 当凝结水和补充水从凝汽器上部进入集水板 通过淋水盘成细水流落在溅水板上 形成的水珠被汽轮机排汽加热 达到除氧的目的 真空式除氧器 大气压式除氧器 除氧器内工作压力较大气压稍高 约0 118MPa 离析出的气体能在该压差的作用下自动排出 优点 工作压力低 造价低 土建费用也低 适宜于中 低参数发电厂 热电厂补充水及生产返回水的除氧设备 除氧器工作压力大于0 343MPa时称为高压除氧器 它多应用在高参数电厂中 高压除氧器 2 除氧器的结构 大气压式除氧器 该除氧器均为立式淋水盘式 如图2 25所示 这种除氧器对淋水盘的安装要求较高 对负荷的适应能力差 现多应用在中参数及以下的电厂 主要优点是 强化传热 传热面积大 能够深度除氧 能够适应负荷 进水温度的变化 喷雾式除氧器 由两部分组成 上部为喷雾层 由喷嘴将水雾化 除去水中大部分溶解氧及其他气体 初期除氧 下部为淋水盘或填料层 在该层除去水中残留的气体 深度除氧 除氧塔 头 有立式与卧式 大型机组采用卧式较多 如图2 26 图2 27 卧式除氧塔长度方向可布置较多喷嘴 避免相邻喷嘴水雾化后相互干扰 完成初期除氧 除氧效果获得保证 也可布置多个排气口 利于气体及时逸出 以免 返氧 影响除氧效果 塔的下部为深度除氧 由上部来的已被除去80 90 氧的凝结水通过布水槽钢均匀喷洒在淋水盘上后 再进入填料层 与底部来的一次加热蒸汽形成逆向流动 完成深度除氧 给水箱是凝结水泵与给水泵之间的缓冲容器 内部设置有启动加热装置和锅炉启动放水装置 600MW超临界机组除氧器 五 新型除氧器 内置式无头除氧器 六 除氧器的热平衡及自生沸腾 除氧器的热平衡 除氧器遵循物质平衡和热平衡的规律 即 进入除氧器的物质 离开除氧器的物质 进入除氧器的热量 离开除氧器的热量 除氧器的自生沸腾及防止方法 自生沸腾现象 除氧器不需要回热抽汽加热 仅凭其他进入除氧器的蒸汽和疏水就可满足将水加热到除氧器工作压力下的饱和温度 这种现象称为自生沸腾现象 除氧器自生沸腾时 工质损失和热量损失加大 除氧效果恶化 威胁除氧器的安全 防止发生除氧器自生沸腾现象的方法 将一些放热的物流改引至他处 设置高加疏水冷却器 提高除氧器压力 将化学补充水引入除氧器 第四节除氧器的运行及其热经济性分析 1 定压运行主机各种负荷下 除氧器工作压力均保持某一定值不变 缺点 在进汽管上安装一压力调节阀 将压力较高的回热抽汽降低至定值 造成抽汽节流损失 且负荷低时 需进行汽源切换 定压运行除氧器多应用在中小型机组上 一 除氧器的运行方式 除氧器有定压和滑压两种运行方式 2 滑压运行除氧器工作压力随主机负荷与抽汽压力的变动而变化 滑压 优点 没有压力调节阀引起的额外的节流损失 热经济性较高 使回热加热分配接近最佳值 滑压运行除氧器多应用在大型机组上 二 除氧器汽源的连接方式 如图2 31 a 抽汽管道设置有压力调节阀 同时当负荷降低到该级抽汽压力满足不了除氧器运行压力要求时 应有能切换至高一级抽汽并相应关闭原级抽汽的装置 这种连接方式的缺点 节流损失增加 降低了该级抽汽的能位 本级抽汽量减少 压力较高一级抽汽量增加 回热抽汽做功比Xr降低 冷源热损失增加 使机组 i降低 在低负荷时原级抽汽关闭 回热级数减少 回热换热过程不可逆损失增大 使Xr减小更多 机组的 i降低更甚 热经济性最低 一般在高 中压电厂带基本负荷的机组中应用较多 该连接方式是在除氧器出口水前方设置一高压加热器并与除氧器共用同一级回热抽汽 组成一级加热 如图2 31 b 所示 该连接方式的热经济性比单独连接方式高 但它是以增加一台高压加热器的投资 系统复杂为代价 只在一些供热机组上采用 1 单独连接定压除氧器方式 2 前置连接定压除氧器方式 这种连接方式在回热抽汽管道上不设压力调节阀 因此在滑压范围 20 100 内 其加热蒸汽压力随机组负荷而变化 避免了加热蒸汽的节流损失 为确保除氧器在低负荷 20 以下 时仍能自动向大气排气 仍应装有至高一级回热抽汽管道上的切换阀和压力调节阀 如图2 31 c 所示 实际上设置辅助蒸汽联箱 如图2 32所示 该连接方式的热经济性是最高的 适合于再热机组和调峰机组 3 滑压除氧器方式 三 除氧器的滑压运行 当机组负荷变化剧烈时 会对除氧效果和给水泵的安全运行带来不利影响 下而分别讨论不利影响及对策 除氧器返氧现象 负荷突然增加时 除氧器已逸出水面的氧气和其它气体又重新返回水中的现象 除氧效果差 但不会造成给水泵进口汽蚀 对策 控制负荷骤升速度 一般在每分钟5 负荷内就可确保除氧效果 在给水箱内加装再沸腾管 对滑压范围加以适当的压缩 除氧器闪蒸现象 负荷突然降低时 除氧器工作压力迅速下降 给水箱中的水快速蒸发的现象 除氧效果更好 但易造成给水泵进口汽蚀 严重地影响给水泵的安全运行 对策 设置备用汽源 如辅助蒸汽联箱 1 负荷骤升 2 负荷骤降 泵在运行中是否发生汽蚀是由有效汽蚀余量 又称有效净正吸水头 NPSHa和必需汽蚀余量 必需净正水头 NPSHr两者之差值决定的 有效汽蚀余量 NPSHa 是指在泵吸入口处 单位重量液体所具有的超过汽化压力的富余能量 也即液体所具有的避免泵发生汽化的能量 它可由下式表示 图2 33表示泵的吸入系统示意图 图2 33吸入系统及离心泵内的压力变化 由上式可知 在前两项保持不变时 若流量增加 吸入系统管路中的压力损失 p增大 NPSHa随之减小 使发生汽蚀的可能性增大 3 给水泵不汽蚀的条件 2 4 图2 34NPSHa和NPSHr随流量的变化关系 必需汽蚀余量NPSHr与泵的结构 转速和流量有关 NPSHr越小 泵本身的汽蚀性能越好 NPSHr随转速升高而加大 又随流量的增加而增加 如图2 34 交点A为临界点 所对应的流量QA称为临界流量 因此 给水泵要能正常运行不发生汽蚀的条件为 2 5 或有效的富裕压头 2 6 4 滑压运行除氧器防止给水泵汽蚀的措施 1 提高给水泵进口的静压头 如 提高除氧器安装高度Hd Hd NPSHa 2 采用低速前置泵向主给水泵供水 n NPSHr 例如 湖南益阳电厂300MW机组 前置泵转速1450r min 主给水泵转速5537r min 3 减小下降管的流动阻力 如 尽量减少吸入管上的弯头及附件 选用合适的流速 2 3m s p NPSHa 4 向给水泵入口注入冷的凝结水或在给水泵进口设置给水冷却器 如图2 36所示 5 设置备用汽源 以减缓暂态过程中除氧器压力的下降 如图产300MW及以上机组设有辅助蒸汽联箱 如图2 32所示 第五节汽轮机组原则性热力系统计算 一 计算目的及基本公式 1 计算目的 确定汽轮机组在某一工况下的热经济指标和各部分汽水流量 根据以上计算结果选择有关的辅助设备和汽水管道 确定某些工况下汽轮机的功率或新汽耗量 新机组本体热力系统定型设计 2 计算方法 定功率计算 功率给定情况下 计算汽轮机新汽耗量 各级抽汽量及热经济性指标 一般电力设计院 电厂用得最多 定流量计算 汽轮机进汽量给定的情况下 计算汽轮机发电机组功率 各级抽汽量及热经济性指标 3 计算的基本公式 用得最多的三个基本公式是热平衡式 物质平衡式和汽轮机功率方程式 加热器热平衡式 吸热量 放热量 h或流入热量 流出热量 通过加热器热平衡式可求出抽汽量Dj j 汽轮机物质平衡式 或 通过物质平衡式可求出凝汽流量Dc c 汽轮机功率方程式 二 计算方法和步骤 机组原则性热力系统计算方法有 传统的常规计算法 等效热降法 循环函数法以及矩阵法等 常规计算法是最基本的一种方法 实际计算时又分 串联法 并联法 串联法 对凝汽式机组采用 由高至低 的计算次序 适宜手工计算 避免求解联立方程组 并联法 适用于计算机计算 对z 1个线性方程组联立求解 常规计算法的步骤如下 1 整理原始资料 根据给定的原始资料 整理 完善及选择有关的数据 以满足计算的需要 将原始资料整理成计算所需的各处汽 水比焓值 如新汽 抽汽 凝汽焓 加热器出口水 疏水 带疏水冷却器的疏水及凝汽器出口水焓 再热蒸汽吸热量等 整理汽水参数原则如下 若已知参数只有汽轮机的新汽 再热蒸汽 回热抽汽的压力和温度及排汽压力时 需画出汽轮机蒸汽膨胀过程的h s图 汽态线 并整理成回热系统汽水参数表 加热器汽侧压力等于抽汽压力减去抽汽管道压损 加热器疏水温度和疏水比焓分别为汽侧压力下对应的饱和水温度和饱和水比焓 高压加热器水侧压力取为给水泵出口压力 低压加热器水侧压力取为凝结水泵或凝升泵出口压力 加热器出口水温由加热器上端差 加热器出口水焓由加热器出口温度t和水侧压力查h s表得出 疏水冷却器出口水温由加热器进口水温和加热器下端差确定 疏水冷却器山口水焓由加热器汽侧压力和疏水冷却器出口水温查h s表得出 当机组为高参数以上大型机组时 应计算给水在给水泵中的焓升 hwpu 合理选择及假定某些未给出的数据 它们有 新蒸汽压损 p0 一般取 p0 3 7 p0 再热蒸汽压损 prh 一般取 prh 10 prh prh为高压缸排汽压力 回热抽汽压损 pj 一般选 pj 3 5 pj pj为回热抽汽压力 加热器出口端差及入口端差 可按推荐值选取 参见本章第二节中有关部分 加热器效率 h 0 98 0 99 机械效率 m 0 99左右 发电机效率 g 0 98 0 99 2 回热抽汽量计算 对凝汽式机组按 由高到低 进行回热抽汽量Dj或回热抽汽系数的计算 3 物质平衡式计算 由物质平衡式可计算凝汽流量Dc或凝汽系数 c或新汽耗量D0 也可由汽轮机功率方程式计算出相应的量 4 计算结果校核 1 利用物质平衡式或汽轮机功率方程式进行计算误差的校核 满足工程上允许的1 2 以下的误差范围即可 2 对假设数据的校核 反复迭代至更准确的程度 5 热经济指标 三 汽轮机组热力系统计算中应注意的几点 1 计算绝对内效率时一般采用正热平衡 2 计算抽汽量时 由高到低进行计算 3 对某些辅助成分可划定适当的局部系统 将其并入其中 如图2 39所示 四 常规法计算示例 计算引进型亚临界压力600MW双缸双排汽凝汽式机组在设计工况下的热经济指标 已知 汽轮机型式 N600 24 2 566 566 蒸汽初参数 p0 24 2MPa t0 566 C p0 0 515MPa t0 1 8 C 再热蒸汽参数 冷段压力MPa 冷段温度 C 热段压力MPa 热段温度trh 566 C prh 0 069MPa trh 1 7 排汽压力 p2 5 4kPa 0 0054MPa 抽汽及轴封参数见表2 2和表2 3 给水泵出口压力ppu 30 38MPa 凝结水泵出口压力为1 84MPa 机械效率 发电机效率分别取为 m 0 99 g 0 988 汽动给水泵用汽系数 pu为0 052 机组回热系统如图2 40所示 1 整理原始资料 1 根据已知参数p t在h s图上画出汽轮机蒸汽膨胀过程线 见图2 41 得到新汽焓h0 各级抽汽焓hj及排汽焓hc 以及再热蒸汽焓升qrh 也可根据p t查水蒸汽表得出上述焓值 h0 3396 0kJ kg hinrh 2970 3kJ kg houtrh 3598 2kJ kg qrh 3598 2 2970 3 627 9kJ kg 2 根据水蒸气表查得各加热器出口水焓hwj及有关疏水焓hj 或hdwj 将机组回热系统计算点参数列于表2 4 2 计算回

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论