方程与函数的区别解读_第1页
方程与函数的区别解读_第2页
方程与函数的区别解读_第3页
方程与函数的区别解读_第4页
方程与函数的区别解读_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

方程与函数的区别 代数式 用运算符号把数或表示数的字母连接而成的式子 叫代数式 函数 如果对于一个变量 比如 x 在某一范围内的每一个确定的值 变量 比如 y 都有唯一确定 的值和它对应 那么 就把 y 叫做 x 的函数 函数式 用解析法 公式法 表示函数的式子叫函数式 方程 含有未知数的等式叫方程 解析式表示因变量与自变量的关系 联系 函数式和方程式都是由代数式组成的 没有代数式 就没有函数和方程 方程只是函数解 析式在某一特定函数值的解 方程表示特定的因变量的自变量解 如 5x 6 7 这是方程 y 5x 6 这是解析式 区别 1 概念不一样 2 代数式不用等号连接 3 函数表示两个变量之间的关系 因变量 函数 随变量 自变量 的变化而变化 4 方程是含有未知数的等式 其未知数 变量 的个数不固定 未知数之间不存在自变和因变的 关系 方程重在说明几个未知数之间的在数字间的关 系 方程可以通过求解得到未知数的大小 方 程可以通过初等变换改变等号左右两边的方程 方程的解是固定的 但函数无固定解值解 式 函数只可以化简 但不可以对函数进行初等变换 5 函数和方程本质区别就是 方程中未知数 x 是一个常量 虽然方程可能有多个解 函数 中 x 是变量 因此 y 也是变量 并且是由于 x 的变化而变化 6 函数 重在说明某几个自变量的变化对因变量的影响 特定的自变量的值就可以决定因 变量的值 就像平面解析几何里圆就是方程 区别在于函数就看他们的值是否一一对应 就像圆的方程 x a 2 y b 2 r 2 就是方程 它们的值不是一一对应关系 所以不是函 数是方程的一种 函数强调的是一一对应 及 1 个 X 值 自变量 只能有一个 Y 值 应变 量 与之对应比如 y x 1 它是函数 y 2 x 它不是函数 但它是方程 7 函数和方程是数学中的两个基本概念 在许多情况下它们可以相互转化 例如在一元函 数 y f x 用一个解析式表示并且不需要区分自变量和因变量 函数 时 这个函数式就可以 看作一个二元方程 反之 能够由方程 F x y 0 确定的函数关系称为隐函数 4 p 9 但 是函数与方程是有差别的 8 首先 函数的自变量和因变量是一一对应的 一个 X 值只有一个相应的 Y 值与之对应 而曲 线方程则不然 比如一个椭圆方程中 对于一个 X 值有两个 Y 值与之对应 像这样的曲线方程 就不能成为一个函数的表达式 其次 函数表达式表示的是两个变量之间一一对应的关系 而曲线方程则借用点的集和的方式来将一个曲线以代数的形式表现出来 实质上一个曲线的 表达 二者关系可以通过例子来看 x 2 x 1 0 相当于函数 y x 2 x 1 函数值 y 0 解方程问题就 转化为函数的自变量 x 定义域中取什么值时 y 0 有点像求反函数 自然 x 2 x 1 1 变成 x 2 x 1 y 也未尝不可 解方程转化为函数的自变量 x 定义域中取那个值时 y 1 实际上上 了大学学了高等数学就知道都可以 数学是工具为人所用 怎么简单就怎么来 但是刚开 始学习函数 函数是有自己的规律法则的 所以 x 2 x 1 1 要把他转换成函数形式就要把 1 移到左边即 x 2 x 2 y 相当于规定都求 y 0 时的 x 这个规定也是约定俗成的 数学中 方程标准都是形式都是右边为零 方式应该是 x y 曲线方程 按照定义 方程是含有未知数的等式 函数是两个非空数集之间的一个映射 方程 F x y 0 中的 x 和 y 都是未知数 关联法则 F 同时作用于 x 和 y 交换两个未知数的位置时它 们之间的关联法则通常要改变 得到的新方程与原方程一般不是同解方程 除了一些特殊情 况外 以下同 而函数中需区分自变量和因变量 对应法则只作用于自变量 一个函数由定义域 A 值域 C 和对应法则 f 确定 与定义域和值域中的元素用什么字母表示无关 因此 y f x x A y C 和 x f y y A x C 表示相同的函数 但它们通常不是同解的方程 y f x x A y C 和 x f 1 y x A y C 一般是不同的函数 但它们是同解的方程 例如 y 2x x 为自变量 x 2y y 为自变量 是相同的函数 不同解的方程 而 y 2x x 为自变量 与 x y y 为自变量 是不同的函数 同解的方程 由此可知 在方程 F x y 0 能够确定隐函数时 那么也应该确定两个函数关系 y f x 和 x f 1 y 而不应当仅仅是前者 例如方程 2s gt2 0 t 0 就可以确定函数 s f t gt2 t 0 以及函数 t j s s 0 其中 g 0 是一个常数 与 显然是不同的函数 但作为方程它们都与 同解 函数与方程的这种差别自然也应该反映在作图上 作二元方程的图形时实际上是把未知数 区分为第一未知数 第二未知数 用前者的值做横坐标 后者的值做纵坐标 例如作方程 的图形时既可以用 t 的值 也可以用 s 的值做横坐标 取决于把谁看作第一未知数 但 是在作以 x 和 y 为未知数的方程的图形时 因为直角坐标系中的横轴和纵轴习惯上分别表 示为 X 轴和 Y 轴 以下简称习惯 1 所以总是用 x 的值做横坐标 y 的值做纵坐标以免混 淆 这种作图方式事实上是默认下面的 约定 1 当方程中的未知数用 x 和 y 表示时就把 x 视为第一未知数 依照上述作图方式 同解的方程 y 2x 和 x y 的图形相同 不同解的方程 y 2x 和 x 2y 的图形也不同 这说明约定 1 是合理的 而对作函数的图象 中学和大学的 数学教材 例如 4 2 和 5 1 6 中都提到了下面的 约定 2 在平面直角坐标系中作函数的图象 横坐标对应自变量的值 纵坐标对应函数 值 即作函数图象时 应该用自变量的值做横坐标 函数值做纵坐标 而不管它们分别用什么 字母表示 例如在作函数 的图象时应该用 t 的值做横坐标 作函数 的图象时应该用 s 的值做横坐标 同理 在作函数 x f y 的图象时应该用 y 的值做横坐标 x 的值做纵坐标 而不应当依据约定 1 按照方程的作图方式作图 于是在同一个直角坐标系中 把 y f x 和 x f y 看作函数时它们的图象是相同的 看作方程时它们的图形一般是不同的 把 y f x 和 x f 1 y 看作函数时它们的图象一般是不同的 而看作方程时它们的图形是相同的 由此得出 在同一直角坐标系中 相同的函数的图象相同 不同的函数的图象也不同 这样 一个顺理成章的结论 说明了约定 2 的合理性 虽然同样由于习惯 1 在作函数 x f y 的 图象时为了避免混淆 常常对调其中的 x 和 y 把函数式改写为 y f x 但是可以这样做 的理由正是因为 y f x 与 x f y 是相同的函数 而不是把它们看作方程 如果只注意到函数与方程的 同 而忽略了它们之间的 异 在考察某些具体问题时就会出 现失误 例如对于反函数表达式中需要交换 x 和 y 的原因 一般都是用 习惯上 我们一般用 x 表 示自变量 y 表示函数 以下简称习惯 2 来说明 某种习惯值得遵循应当有其合理性以及 必要性 对为什么有必要遵循这个习惯 存在不同看法 一种影响较大的观点是 由于在 同一直角坐标系中 y f x 和 x f 1 y 的图象相同 因此 把反函数 x f 1 y 改写成 y f 1 x 还有一个好处 即它们的图象关于直线 y x 对称 1 p 38 这种观点也经常反 映在一些习题中 例如 1 若函数 y f x 有反函数 则在同一坐标系中 y f x 和 x f 1 y 的图象 A 关于直线 y x 对称 B 关于 y 轴对称 C 表示同一曲线 D 关于原点对称 2 若函数 y f x 存在反函数 则下列命题中不正确的是 A 函数 y f x 与函数 x f y 的图象关于直线 y x 对称 B 若 y f x 是奇函数 则 y f 1 x 也是奇函数 C 若 y f x 在其定义域 a b 上是增函数 则 y f 1 x 在 a b 上也是增函数 D 函数 y f x 和 x f 1 y 的图象重合 6 中给出 1 的答案是 C 7 中给出的 2 答案也是 C 笔者认为上述观点的缺陷在于忽略了函数与方程的差别 从而在讨论同一问题时先后使用 了不同的标准 即在考察原函数与反函数的图象时先把函数看作方程 得出它们的图象相 同的结论 而在改写反函数时又需要把它们看作函数 所以才可以改写 这样将会导致逻 辑推理的冲突 事实上 因为函数 x f 1 y 和 y f 1 x 表示相同的函数关系 所以允许 交换其中的 x 和 y 这是可以遵循习惯 2 改写反函数的理论依据 而认为两个不同的函数 y f x 和 x f 1 y 的图象相同 两个相同的函数 y f x 与 x f y 的图象不相同 是把它 们等同于方程了 但是如果看作方程 那么 x f 1 y 与 y f 1 x 一般情况下是不同解的 又怎么能用后者去代替前者呢 此外 根据定义 函数 y f x 的反函数是 x f 1 y 如 果要改写反函数后 原函数的图象与反函数的图象关于直线 y x 对称 才能成立 那么这 个结论是否显得牵强 因为原本是不成立的 由此自然会对改写反函数的必要性产生疑问 一种看法甚至认为是迁就了 不良的习惯 例如 2 第 26 页 在一些较早的教科书中把函数的解析式就称为方程 对函数和方程的图形不加区别 例如 对我国 50 年代数学教育产生过一定影响的 3 在讨论反函数的图象时 先指出方程 y f x 和 x f 1 y 所给出的 x 与 y 之间的关系是相同的 实际上应当是把 y f x 和 x f 1 y 都看 作方程 F x y 0 时 x 与 y 之间的关联关系 F 相同 而不是作为函数时的对应关系 f 和 f 1 所以它们的图象相同 然后说明此时 即按照方程的作图方法 需把 x f 1 y 中的自变量 y 取在 Y 轴上很不方便 因此需要旋转整个平面使表示自变量的轴和表示函数的轴互换位置 事实上已经认可了约定 2 于是反函数 x f 1 y 就变成 y f 1 x 了 这样得出 y f 1 x 略 显麻烦 而且旋转时坐标轴的方向及名称是否改变 所以后来编写的大部分教科书中的说 法与此有所不同 4 2 中把约定 1 作为改写反函数的原因 说明了改写的必要性 但 是在此之前的陈述 从图形上看 曲线 y f x 和 x f 1 y 是同一条曲线 仍然是先看成方 程 5 1 8 中指出 x f 1 y 和 y f 1 x 表示同一个函数 说明了改写的合理性 而对 其必要性则与中学课本一致 用前面提到的 习惯上 解释 其实只要以前面的两个约定为依据 对该问题容易作出简明合理的解释 即 把 y f x 和 x f 1 y 看作方程时它们的图形是相同的 但是这里考虑的对象是函数 在作反函数 x f 1 y 的图象时应该按照约定 2 以 y 的值作横坐标 x 的值作纵坐标 这样画出的图 形与原函数 y f x 的图象关于直线 y x 对称 因此 原函数的图象与反函数的图象关于 直线 y x 对称 本来就是成立的 并不依赖于改写反函数表达式 只是在横轴和纵轴已 经分别表示为 X 轴 Y 轴的情况下这样作图容易产生混淆 所以交换一下反函数中 x 和 y 的位置 既没有改变反函数的实质 又避免了作图时的不便 笔者认为这才是有必要改写 反函数表达式的主要原因 按照前面的讨论 习题 1 的正确答案应该是 A 习题 2 中的命题 A C D 都是不正确的 由此可见 由于对函数与方程的关系的认识分歧造成了对一些具体问题的说法不统一 并 且这些分歧已经反映到教学中 可能给学生造成认知上的困难和混乱 因此有必要统一认 识 以便于对有关问题给出合理 一致的解释 笔者认为引入习惯 1 和习惯 2 等 习惯 的原意是将本质上相同的对象如方程 函数 图形 等用一般形式加以抽象 概括 以便于研究和叙述其普遍规律 尽管遵循这些习惯可以带 来一些方便并且已经被广泛采纳 但是由于变量或未知数经常用其它符号表示 例如在物理 中 并且自变量和因变量也可能相互转化 例如求反函数时 因此在考察具体问题时不应 过分受其束缚 若拘泥于上述习惯而忽略了对象或方法的实质性的差别 如约定 1 与约定 2 那就偏离了引入这些习惯的初衷 因此建议在教学中应当注意强调 最好在教科书中就明确指出 一般性方法 例如作二元方 程的图形时用第一未知数的值做横坐标 第二未知数的值做纵坐标 作函数的图象时用自 变量的值做横坐标 函数值做纵坐标等 并且在有关部分适当增加变量或未知数用其它字 母表示的函数或方程的例 习题 这样可以让初学者通过比较认清方法的实质 有利于对 一般规律的理解和掌握 避免形成错误的思维定势 例如 x 一定是自变量 y 一定是因变量 作函数 x 1 y 的图象时也必须用 x 值作横坐标等 随着科学技术的进展 数学理论本 身也在不断完善 如引进集合的概念 给出函数的现代定义等 从而对某些问题的看法也 可能有必要更新 椭圆 X a cosx y b sinx 双曲线 x a sec y b tg 抛物线 x 2p t 2 y 2p

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论