




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
10KV配电系统保护原理及选择摘要:配电自动化技术是服务于城乡配电网改造建设的重要技术,配电自动化包括馈线自动化和配电管理系统,通信技术是配电自动化的关键。目前,我国配电自动化进行了较多试点,由配电主站、子站和馈线终端构成的三层结构已得到普遍认可,光纤通信作为主干网的通信方式也得到共识。笔者主要对馈线自动化原理和10KV配电变压器的保护配置方式进行技术-经济比较。关键词:馈线自动化、通信技术、10KV配电变压器、断路器、负荷开关、熔断器、保护配置一、配电网馈线保护的技术现状电力系统由发电、输电和配电三部分组成。发电环节的保护集中在元件保护,其主要目的是确保发电厂发生电气故障时将设备的损失降为最小。输电网的保护集中在输电线路的保护,其首要目的是维护电网的稳定。配电环节的保护集中在馈线保护上,配电网不存在稳定问题,一般认为馈线故障的切除并不严格要求是快速的。不同的配电网对负荷供电可靠性和供电质量要求不同。许多配电网仅是考虑线路故障对售电量的影响及配电设备寿命的影响,尚未将配电网故障对电力负荷(用户)的负面影响作为配电网保护的目的。随着我国经济的发展,电力用户用电的依赖性越来越强,供电可靠性和供电电能质量成为配电网的工作重点,而配电网馈线保护的主要作用也成为提高供电可靠性和提高电能质量,具体包括馈线故障切除、故障隔离和恢复供电。具体实现方式有以下几种:1.1传统的电流保护过电流保护是最基本的继电保护之一。考虑到经济原因,配电网馈线保护广泛采用电流保护。配电线路一般很短,由于配电网不存在稳定问题,为了确保电流保护动作的选择性,采用时间配合的方式实现全线路的保护。常用的方式有反时限电流保护和三段电流保护,其中反时限电流保护的时间配合特性又分为标准反时限、非常反时限、极端反时限和超反时限,参见式(1)、(2)、(3)和(4)。这类保护整定方便、配合灵活、价格便宜,同时可以包含低电压闭锁或方向闭锁,以提高可靠性;增加重合闸功能、低周减载功能和小电流接地选线功能。电流保护实现配电网保护的前提是将整条馈线视为一个单元。当馈线故障时,将整条线路切掉,并不考虑对非故障区域的恢复供电,这些不利于提高供电可靠性。另一方面,由于依赖时间延时实现保护的选择性,导致某些故障的切除时间偏长,影响设备寿命。1.2重合器方式的馈线保护实现馈线分段、增加电源点是提高供电可靠性的基础。重合器保护是将馈线故障自动限制在一个区段内的有效方式参考文献。参见图1,重合器R位于线路首端,该馈线由A、B、C三个分段器分为四段。当AB区段内发生故障F1,重合器R动作切除故障,此后,A、B、C分段器失压后自动断开,重合器R经延时后重合,分段器A电压恢复后延时合闸。同样,分段器B电压恢复后延时合闸。当B合闸于故障后,重合器R再次跳开,当重合器第二次重合后,分段器A将再次合闸,此后B将自动闭锁在分闸位置,从而实现故障切除、故障隔离及对非故障段的恢复供电。目前在我国城乡电网改造中仍有大量重合器得到应用,这种简单而有效的方式能够提高供电可靠性,相对于传统的电流保护有较大的优势。该方案的缺点是故障隔离的时间较长,多次重合对相关的负荷有一定影响。1.3基于馈线自动化的馈线保护配电自动化包括馈线自动化和配电管理系统,其中馈线自动化实现对馈线信息的采集和控制,同时也实现了馈线保护。馈线自动化的核心是通信,以通信为基础可以实现配电网全局性的数据采集与控制,从而实现配电SCADA、配电高级应用(PAS)。同时以地理信息系统(GIS)为平台实现了配电网的设备管理、图资管理,而SCADA、GIS和PAS的一体化则促使配电自动化成为提供配电网保护与监控、配电网管理的全方位自动化运行管理系统。参见图2所示系统,这种馈线自动化的基本原理如下:当在开关S1和开关S2之间发生故障(非单相接地),线路出口保护使断路器B1动作,将故障线路切除,装设在S1处的FTU 检测到故障电流而装设在开关S2处的FTU没有故障电流流过,此时自动化系统将确认该故障发生在S1与S2之间,遥控跳开S1和S2实现故障隔离并遥控合上线路出口的断路器,最后合上联络开关S3完成向非故障区域的恢复供电。这种基于通信的馈线自动化方案以集中控制为核心,综合了电流保护、RTU遥控及重合闸的多种方式,能够快速切除故障,在几秒到几十秒的时间内实现故障隔离,在几十秒到几分钟内实现恢复供电。该方案是目前配网自动化的主流方案,能够将馈线保护集成于一体化的配电网监控系统中,从故障切除、故障隔离、恢复供电方面都有效地提高了供电可靠性。同时,在整个配电自动化中,可以加装电能质量监测和补偿装置,从而在全局上实现改善电能质量的控制。二、馈线保护的发展趋势目前,配电自动化中的馈线自动化较好地实现了馈线保护功能。但是随着配电自动化技术的发展及实践,对配电网保护的目的也要悄然发生变化。最初的配电网保护是以低成本的电流保护切除馈线故障,随着对供电可靠性要求的提高,又出现以低成本的重合器方式实现故障隔离、恢复供电,随着配电自动化的实施,馈线保护体现为基于远方通信的集中控制式的馈线自动化方式。在配电自动化的基础上,配电网通信得到充分重视,成本自动化的核心。目前国内的主流通信方式是光纤通信,具体分为光纤环网和光纤以太网。建立在光纤通信基础上的馈线保护的实现由以下三部分组成:1)电流保护切除故障;2)集中式的配电主站或子站遥控FTU实现故障隔离;3)集中式的配电主站或子站遥控FTU实现向非故障区域的恢复供电。这种实现方式实质上是在自动装置无选择性动作后的恢复供电。如果能够解决馈线故障时保护动作的选择性,就可以大大提高馈线保护的性能,从而一次性地实现故障切除与故障隔离。这需要馈线上的多个保护装置利用快速通信协同动作,共同实现有选择性的故障隔离,这就是馈线系统保护的基本思想。三、馈线系统保护基本原理3.1 基本原理馈线系统保护实现的前提条件如下:1)快速通信;2)控制对象是断路器;3)终端是保护装置,而非TTU.在高压线路保护中,高频保护、电流差动保护都是依靠快速通信实现的主保护,馈线系统保护是在多于两个装置之间通信的基础上实现的区域性保护。基本原理如下:参见图3所示典型系统,该系统采用断路器作为分段开关,如图A、B、C、D、E、F.对于变电站M,手拉手的线路为A至D之间的部分。变电站N则对应于C至F之间的部分。N侧的馈线系统保护则控制开关A、B、C、D的保护单元UR1至UR7组成。当线路故障F1发生在BC区段,开关A、B处将流过故障电流,开关C处无故障电流。但出现低电压。此时系统保护将执行步骤:Step1:保护起动,UR1、UR2、UR3分别起动;Step2:保护计算故障区段信息;Step3:相邻保护之间通信;Step4:UR2、UR3动作切除故障;Step5:UR2重合。如重合成功,转至Step9;Step6:UR2重合于故障,再跳开;Step7:UR3在T内未测得电压恢复,通知UR4合闸;Step8:UR4合闸,恢复CD段供电,转至Step10;Step9:UR3在T时间内测得电压恢复,UR3重合;Step10:故障隔离,恢复供电结束。3.2 故障区段信息定义故障区段信息如下:逻辑1:表示保护单元测量到故障电流,逻辑0:表示保护单元未测量到故障电流,但测量到低电压。当故障发生后,系统保护各单元向相邻保护单元交换故障区段,对于一个保护单元,当本身的故障区段信息与收到的故障区段信息的异或为1时,出口跳闸。为了确保故障区段信息识别的正确性,在进行逻辑1的判断时,可以增加低压闭锁及功率方向闭锁。3.3 系统保护动作速度及其后备保护为了确保馈线保护的可靠性,在馈线的首端UR1处设限时电流保护,建议整定时间内0.2秒,即要求馈线系统保护在200ms内完成故障隔离。在保护动作时间上,系统保护能够在20ms内识别出故障区段信息,并起动通信。光纤通信速度很快,考虑到重发多帧信息,相邻保护单元之间的通信应在30ms内完成。断路器动作时间为40ms100ms.这样,只要通信环节理想即可实现快速保护。3.4 馈线系统保护的应用前景馈线系统保护在很大程度上沿续了高压线路纵联保护的基本原则。由于配电网的通信条件很可能十分理想。在此基础之上实现的馈线保护功能的性能大大提高。馈线系统保护利用通信实现了保护的选择性,将故障识别、故障隔离、重合闸、恢复故障一次性完成,具有以下优点:1)快速处理故障,不需多次重合;2)快速切除故障,提高了电动机类负荷的电能质量;3)直接将故障隔离在故障区段,不影响非故障区段;4)功能完成下放到馈线保护装置,无需配电主站、子站配合。四。系统保护展望继电保护的发展经历了电磁型、晶体管型、集成电路型和微机型。微机保护在拥有很强的计算能力的同时,也具有很强的通信能力。通信技术,尤其是快速通信技术的发展和普及,也推动了继电保护的发展。系统保护就是基于快速通信的由多个位于不同位置的保护装置共同构成的区域行广义保护。电流保护、距离保护及主设备保护都是采集就地信息,利用局部电气量完成故障的就地切除。线路纵联保护则是利用通信完成两点之间的故障信息交换,进行处于异地的两个装置协同动作。近年来出现的分布式母差保护则是利用快速的通信网络实现多个装置之间的快速协同动作如果由位于广域电网的不同变电站的保护装置共同构成协同保护则很可能将继电保护的应用范围提高到一个新的层次。这种协同保护不仅可以改进保护间的配合,共同实现性能更理想的保护,而且可以演生于基于继电保护相角测量的稳定监控协系统,基于继电保护的高精度多端故障测距以及基于继电保护的电力系统动态模型及动态过程分析等应用领域。目前,在输电网中已经出现了基于GPS的动态稳定系统和分散式行波测距系统。在配电网,伴随贼配电自动化的开展。配电网馈线系统保护有可能率先得到应用。五、10KV配电变压器的配置方式无论是在环网供电单元、箱式变电站或是终端用户的高压室结线方式中,如配电变压器发生短路故障时,保护配置能快速可靠地切除故障,对保护10kV高压开关设备和变压器都非常重要。保护方式的配置一般有两种:一种利用断路器;另一种则利用负荷开关加高遮断容量的后备式限流熔断器组合。这两种配置方式在技术和经济上各有优缺点,以下对这两种方式进行综合比较分析。 5、1环网供电单元接线形式1)环网供电单元的组成环网供电单元(RMU)由间隔组成,一般至少有3个间隔,包括2个环缆进出间隔和1个变压器回路间隔。2)环网供电单元保护方式的配置环缆馈线与变压器馈线间隔均采用负荷开关,通常为具有接通、隔断和接地功能的三工位负荷开关。变压器馈线间隔还增加高遮断容量后备式限流熔断器来提供保护。实际运行证明,这是一种简单、可靠而又经济的配电方式。3)环网供电单元保护配置的特点负荷开关用于分合额定负荷电流,具有结构简单、价格便宜等特点,但不能开断短路电流,高遮断容量后备式限流熔断器为保护元件,可开断短路电流,如将两者有机地结合起来,可满足配电系统各种正常和故障运行方式下操作保护的要求。断路器参数的确定和结构的设计制造均严格按标准要求进行,兼具操作和保护两种功能,所以其结构复杂,造价昂贵,大量使用不现实。环网柜中大量使用负荷开关加高遮断容量后备式熔断器组合装置,把对电器不尽相同的操作与保护功能分别由两种简单、便宜的元件来实现,即用负荷开关来完成大量发生的负荷合分操作,而采用高遮断容量后备式限流熔断器对极少发生短路的设备起保护作用,很好地解决问题,既可避免使用操作复杂、价格昂贵的断路器,又可满足实际运行的需要。六、10kV配电变压器保护配置方式的合理选择:a)断路器具备所有保护功能与操作功能,但价格昂贵;b)负荷开关与断路器性能基本相同,但它不能开断短路电流;c)负荷开关加高遮断容量后备式限流熔断器组合,可断开短路电流,部分熔断器的分断容量比断路器还高,因此,使用负荷开关加高遮断容量后备式限流熔断器组合不比断路器效果差,可费用却可以大大降低。6、1负荷开关加高遮断容量后备式熔断器组合的优点采用负荷开关加高遮容量熔断器组合,具有如下优点:a)开合空载变压器的性能好。环网柜的负荷种类,绝大部分为配电变压器,一般容量不大于1250kVA,极少情况达1600kVA,配电变压器空载电流一般为额定电流的2%左右,较大的配电变压器空载电流较小。环网柜开合空载变压器小电流时,性能良好,不会产生较高过电压。b)有效保护配电变压器,特别是对于油浸变压器,采用负荷开关加高遮断容量后备式限流熔断器比采用断路器更为有效,有时后者甚至并不能起到有效的保护作用。有关资料表明,当油浸变压器发生短路故障时,电弧产生的压力升高和油气化形成的气泡会占据原属于油的空间,油会将压力传给变压器油箱体,随短路状态的继续,压力进一步上升,致使油箱体变形和开裂。为了不破坏油箱体,必须在20ms内切除故障。如采用断路器,因有继电保护再加上自身动作时间和熄弧时间,其全开断时间一般不会少于60ms,这就不能有效地保护变压器。而高遮断容量后备式限流熔断器具有速断功能,加上其具有限流作用,可在10ms之内切除故障并限制短路电流,能够有效地保护变压器。因此,应采用高遮断容量后备式限流熔断器而尽量不用断路器来保护电器,即便负荷为干式变压器,因熔断器保护动作快,也比用断路器好。c)从继电保护的配合来讲,在大多数情况下,也没有必要在环网柜中采用断路器,这是因为环网配电网络的首端断路器(即110kV或220kV变电站的10kV馈出线断路器)的保护设置一般为:速断保护的时间为0s,过流保护的时间为0.5s,零序保护的时间为0.5s。若环网柜中采用断路器,即使整定时间为0s动作,由于断路器固有动作时间分散,也很难保证环网柜中的断路器而不是上一级断路器首先动作。d)高遮断容量后备式限流熔断器可对其后所接设备,如电流互感器、电缆等都可提供保护。高遮断容量后备式限流熔断器的保护范围可在最小熔化电流(通常为熔断器额定电流的23倍)到最大开断容量之间。限流熔断器的电流-时间特性,一般为陡峭的反时限曲线,短路发生后,可在很短的时间内熔断,切除故障。如果采用断路器作保护。必定使其它电器如电缆、电流互感器、变压器套管等元件的热稳定要求大幅度提高,加大了电器设备的造价,增大工程费用。在这里,有必要指出在采用负荷开关加高遮断容量后备式熔断器组合时,两者之间要很好地配合,当熔断器非三相熔断时,熔断器的撞针要使负荷开关立即联跳,防止缺相运行。6、2终端用户高压室接线形式标准GB142851993继电保护和安全自动装置技术规程规定,选择配电变压器的保护开关设备时,当容量等于或大于800kVA,应选用带继电保护装置的断路器。对于这个规定,可以理解为基于以下两方面的需要:a)配电变压器容量达到800kVA及以上时,过去多数使用油浸变压器,并配备有瓦斯继电器,使用断路器可与瓦斯继电器相配合,从而对变压器进行有效地保护。b)对于装置容量大于800kVA的用户,因种种原因引起单相接地故障导致零序保护动作,从而使断路器跳闸,分隔故障,不至于引起主变电站的馈线断路器动作,影响其他用户的正常供电。此外,标准还明确规定,即使单台变压器未达到此容量,但如果用户的配电变压器的总容量达到800kVA时,亦要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 阳山小学考试试卷及答案
- 2.2任务二花卉的分株繁殖 说课稿 2024-2025学年浙教版初中劳动技术七年级下册
- 2025年滨州市实验小学六年级第二十三单元测试数学试卷新课
- 成人经口气管插管机械通气患者口腔护理
- 2025年起重机械指挥证模拟考试题库及答案
- 2025年高考生物试题分类汇编体液调节(解析版)
- 人工智能应用基础 课件 项目4 人工智能开发与技术应用
- 2025年山东省青岛市中考化学试题(解析版)
- 2025购物中心省级区域代理合同
- 小班图形规律题目及答案
- 医院绩效考核指标体系设计与实施
- 2025年农业农村局公务员招聘面试指南与模拟题解析
- 食堂食品安全风险日管控、周排查、月调度管理制度
- 中药材仓库管理制度
- 2025年广西南宁市宾阳县公开招聘乡村医生73人笔试备考试题及答案解析
- 2025年秋季新学期全体教职工大会上校长讲话:汇一股心力、立两个目标、守三条底线、打四场硬仗
- 2025至2030中国水射流强化泵行业项目调研及市场前景预测评估报告
- 2025年保安员理论考试题库及答案
- 2025年江苏省综合评标评审专家库专家考试(公共基础知识)历年参考题库含答案详解(5套)
- 2025废气处理合作协议合同范本
- 麻醉师进修汇报
评论
0/150
提交评论