第八章 组合变形_第1页
第八章 组合变形_第2页
第八章 组合变形_第3页
第八章 组合变形_第4页
第八章 组合变形_第5页
已阅读5页,还剩71页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第八章组合变形 Chapter8Combineddeformation 材料力学 MechanicsofMaterials 第八章组合变形 Combineddeformation 组合变形 一 组合变形的概念 Conceptsofcombineddeformation 构件在荷载作用下发生两种或两种以上的基本变形 则构件的变形称为组合变形 二 解决组合变形问题的基本方法 叠加法 Basicmethodforslovingcombineddeformation superpositionmethod 叠加原理的成立要求 内力 应力 应变 变形等与外力之间成线性关系 8 1组合变形和叠加原理 Combineddeformationandsuperpositionmethod 三 工程实例 Engineeringexamples 1 外力分析 Analysisofexternalforce 将外力简化并沿主惯性轴分解 将组合变形分解为基本变形 使之每个力 或力偶 对应一种基本变形 3 应力分析 Stressanalysis 画出危险截面的应力分布图 利用叠加原理将基本变形下的应力和变形叠加 建立危险点的强度条件 四 处理组合变形的基本方法 Basicmethodforsolvingcombineddeformation 2 内力分析 Analysisofinternalforce 求每个外力分量对应的内力方程和内力图 确定危险截截面 分别计算在每一种基本变形下构件的应力和变形 一 受力特点 Characterofexternalforce 杆件将发生拉伸 压缩 与弯曲组合变形 作用在杆件上的外力既有轴向拉 压 力 还有横向力 二 变形特点 Characterofdeformation 8 2拉伸 或压缩 与弯曲的组合 Combinedaxialloadingandbending F1产生弯曲变形 F2产生拉伸变形 Fy产生弯曲变形 Fx产生拉伸变形 示例1 示例2 三 内力分析 Analysisofinternalforce 横截面上内力 Internalforceoncrosssection 2 弯曲 1 拉 压 轴力FN Axialforce 弯矩MZ Bendingmoment 剪力FS shearforce 因为引起的剪应力较小 故一般不考虑 横截面上任意一点 z y 处的正应力计算公式为 四 应力分析 Analysisofstress 1 拉伸正应力 Axialnormalstress 2 弯曲正应力 Bendingnormalstress 轴力 Axialforce 所以跨中截面是杆的危险截面 F2 F2 l 2 l 2 3 危险截面的确定 Determinethedangercrosssection 作内力图 弯矩 Bendingmoment 拉伸正应力 最大弯曲正应力 杆危险截面下边缘各点处上的拉应力为 4 计算危险点的应力 Calculatingstressofthedangerpoint F2 F2 l 2 l 2 当材料的许用拉应力和许用压应力不相等时 应分别建立杆件的抗拉 抗压强度条件 五 强度条件 Strengthcondition 由于危险点处的应力状态仍为单向应力状态 故其强度条件为 例题1悬臂吊车如图所示 横梁用20a工字钢制成 其抗弯刚度Wz 237cm3 横截面面积A 35 5cm2 总荷载F 34kN 横梁材料的许用应力为 125MPa 校核横梁AB的强度 F A C D 1 2m 1 2m B 30 AB杆为平面弯曲与轴向压缩组合变形 中间截面为危险截面 最大压应力发生在该截面的上边缘 解 1 分析AB的受力情况 F A C D 1 2m 1 2m 30 B 2 压缩正应力 3 最大弯曲正应力 4 危险点的应力 B A D F FRAy FRAx F A C D 1 2m 1 2m 30 B 例题2小型压力机的铸铁框架如图所示 已知材料的许用拉应力 t 30MPa 许用压应力 c 160MPa 试按立柱的强度确定压力机的许可压力F 350 F F 50 50 150 150 解 1 确定形心位置 A 15 10 3m2 Z0 7 5cm Iy 5310cm4 计算截面对中性轴y的惯性矩 350 F F 50 50 150 150 2 分析立柱横截面上的内力和应力 在n n截面上有轴力FN及弯矩My n n 350 F F 50 50 150 150 由轴力FN产生的拉伸正应力为 n n 350 F F 50 50 150 150 由弯矩My产生的最大弯曲正应力为 50 50 150 150 n n 350 F F 3 叠加 在截面内侧有最大拉应力 50 50 150 150 n n 350 F F 在截面外侧有最大压应力 F 45 1kN 所以取 50 50 150 150 n n 350 F F 例题3正方形截面立柱的中间处开一个槽 使截面面积为原来截面面积的一半 求开槽后立柱的的最大压应力是原来不开槽的几倍 F F 1 1 未开槽前立柱为轴向压缩 解 F 开槽后1 1是危险截面 危险截面为偏心压缩 将力F向1 1形心简化 例题4矩形截面柱如图所示 F1的作用线与杆轴线重合 F2作用在y轴上 已知 F1 F2 80kN b 24cm h 30cm 如要使柱的m m截面只出现压应力 求F2的偏心距e 解 1 外力分析将力F2向截面形心简化后 梁上的外力有 轴向压力 力偶矩 F1 m m 2 m m横截面上的内力有 轴力 弯矩 轴力产生压应力 弯矩产生的最大正应力 3 依题的要求 整个截面只有压应力 得 F1 m m 8 3偏心拉 压 截面核心 Eccentricloads thekernofasection 1 定义 Definition 当外力作用线与杆的轴线平行但不重合时 将引起轴向拉伸 压缩 和平面弯曲两种基本变形 一 偏心拉 压 Eccentricloads x y z 2 以横截面具有两对称轴的等直杆承受偏心拉力F为例 1 将外力向截面形心简化 使每个力 或力偶 只产生一种基本变形形式 轴向拉力F 力偶矩m Fe 将m向y轴和z轴分解 F使杆发生拉伸变形 My使杆发生xz平面内的弯曲变形 y为中性轴 Mz使杆发生xy平面内的弯曲变形 z为中性轴 二 任意横截面n n上的内力分析 Analysisofinternalforceonanycrosssectionn n 轴力FN F 弯矩 三 任意横截面n n上C点的应力分析 Stressanalysisatpointconcrosssectionn n 由F产生的正应力 由My产生的正应力 由Mz产生的正应力 由于C点在第一象限内 根据杆件的变形可知 由叠加原理 得C点处的正应力为 均为拉应力 式中 A为横截面面积 Iy Iz分别为横截面对y轴和z轴的惯性矩 zF yF 为力F作用点的坐标 z y 为所求应力点的坐标 上式是一个平面方程 表明正应力在横截面上按线性规律变化 应力平面与横截面的交线 直线 0 就是中性轴 四 中性轴的位置 Thelocationofneutralaxis 令y0 z0代表中性轴上任一点的坐标 即得中性轴方程 讨论 1 在偏心拉伸 压缩 情况下 中性轴是一条不通过截面形心的直线 y z O 2 用ay和az记中性轴在y z两轴上的截距 则有 3 中性轴与外力作用点分别处于截面形心的相对两侧 z 4 中性轴将横截面上的应力区域分为拉伸区和压缩区 横截面上最大拉应力和最大压应力分别为D1 D2两切点 a b c y y z z 5 对于周边具有棱角的截面 其危险点必定在截面的棱角处 并可根据杆件的变形来确定 N FyF Wz 最大拉应力 tmax和最大压应力 cmin分别在截面的棱角D1D2处 无需先确定中性轴的位置 直接观察确定危险点的位置即可 五 强度条件 Strengthcondition 由于危险点处仍为单向应力状态 因此 求得最大正应力后 建立的强度条件为 y z 六 截面核心 Thekernofasection yF zF 为外力作用点的坐标 ay az为中性轴在y轴和z轴上的截距 当中性轴与图形相切或远离图形时 整个图形上将只有拉应力或只有压应力 y z y z y z y z 截面核心 1 定义 Definition 当外力作用点位于包括截面形心的一个区域内时 就可以保证中性轴不穿过横截面 整个截面上只有拉应力或压应力 这个区域就称为截面核心 Thekernofasection y z 当外力作用在截面核心的边界上时 与此相应的中性轴正好与截面的周边相切 截面核心的边界就由此关系确定 2 截面核心的确定 Determinethekernofasection 例5求圆形截面的截面核心 圆截面的惯性半径 由于圆截面对于圆心O是对称的 因而 截面核心的边界对于圆也应是对称的 从而可知 截面核心边界是一个以O为圆心 以d 8为半径的圆 2 例6求矩形截面的截面核心 Thekernofarectanglesection 矩形截面的 直线 绕顶点B旋转到直线 时 将得到一系列通过B点但斜率不同的中性轴 而B点坐标yB zB是这一系列中性轴上所共有的 这些中性轴方程为 上式可以看作是表示外力作用点坐标间关系的直线方程 故外力作用点移动的轨迹是直线 这些中性轴方程为 1 对于具有棱角的截面 均可按上述方法确定截面核心 2 对于周边有凹进部分的截面 如T字形截面 能取与凹进部分的周边相切的直线作为中性轴 因为这种直线穿过横截面 4 讨论 Discussion 研究对象 Researchobject 圆截面杆 circularbars 受力特点 Characterofexternalforce 杆件同时承受转矩和横向力作用 变形特点 Characterofdeformation 发生扭转和弯曲两种基本变形 8 4扭转与弯曲的组合 Combinedbendingandtorsion 一 内力分析 Analysisofinternalforce 设一直径为d的等直圆杆AB B端具有与AB成直角的刚臂 研究AB杆的内力 将力F向AB杆右端截面的形心B简化得 横向力F 引起平面弯曲 力偶矩m Fa 引起扭转 AB杆为弯 扭组合变形 画内力图确定危险截面 固定端A截面为危险截面 Fl A截面 二 应力分析 Stressanalysis 危险截面上的危险点为C1和C2点 最大扭转切应力 发生在截面周边上的各点处 危险截面上的最大弯曲正应力 发生在C1 C2处 A截面 对于许用拉 压应力相等的塑性材料制成的杆 这两点的危险程度是相同的 可取任意点C1来研究 C1点处于平面应力状态 该点的单元体如图示 三 强度分析 Analysisofstrengthcondition 1 主应力计算 Calculatingprincipalstress 2 相当应力计算 Calculatingequalstress 第三强度理论 计算相当力 第四强度理论 计算相当应力 3 强度校核 Checkthestrength 1 该公式适用于图示的平面应力状态 是危险点的正应力 是危险点的切应力 且横截面不限于圆形截面 讨论 该公式适用于弯 扭组合变形 拉 压 与扭转的组合变形 以及拉 压 扭转与弯曲的组合变形 弯 扭组合变形时 相应的相当应力表达式可改写为 对于圆形截面杆有 2 式中W为杆的抗弯截面系数 M T分别为危险截面的弯矩和扭矩 以上两式只适用于弯 扭组合变形下的圆截面杆 例题7空心圆杆AB和CD杆焊接成整体结构 受力如图 AB杆的外径D 140mm 内 外径之比 d D 0 8 材料的许用应力 160MPa 试用第三强度理论校核AB杆的强度 A B C D 1 4m 0 6m 15kN 10kN 0 8m 解 1 外力分析将力向AB杆的B截面形心简化得 AB杆为扭转和平面弯曲的组合变形 15kN m 2 内力分析 画扭矩图和弯矩图 固定端截面为危险截面 20kN m 例题8传动轴如图所示 在A处作用一个外力偶矩m 1kN m 皮带轮直径D 300mm 皮带轮紧边拉力为F1 松边拉力为F2 且F1 2F2 L 200mm 轴的许用应力 160MPa 试用第三强度理论设计轴的直径 解 将力向轴的形心简化 轴产生扭转和垂直纵向对称面内的平面弯曲 中间截面为危险截面 1kN m 例题9图示一钢制实心圆轴 轴上的齿轮C上作用有铅垂切向力5kN 径向力1 82kN 齿轮D上作用有水平切向力10kN 径向力3 64kN 齿轮C的节圆直径d1 400mm 齿轮D的节圆直径d2 200mm 设许用应力 100MPa 试按第四强度理论求轴的直径 解 1 外力的简化 将每个齿轮上的外力向该轴的截面形心简化 B A C D y z 5kN 10kN 300mm 300mm 100mm x 1 82kN 3 64kN 1kN m使轴产生扭转 5kN 3 64kN使轴在xz纵对称面内产生弯曲 1 82kN 10kN使轴在xy纵对称面内产生弯曲 2 轴的变形分析 T 1kN m 圆杆发生的是斜弯曲与扭转的组合变形 由于通过圆轴轴线的任一平面都是纵向对称平面 故轴在xz和xy两平面内弯曲的合成结果仍为平面弯曲 从而可用总弯矩来计算该截面正应力 1 C T图 Mz图 0 227 1 C B 3 绘制轴的内力图 B截面是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论