交通灯信号识别算法研究总结 (2)_第1页
交通灯信号识别算法研究总结 (2)_第2页
交通灯信号识别算法研究总结 (2)_第3页
交通灯信号识别算法研究总结 (2)_第4页
交通灯信号识别算法研究总结 (2)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

交通灯信号识别算法研究总结复杂场景下交通信号灯的检测与识别:交通信号灯色彩状态识别以及方向指示信号灯识别。系统框架分为检测、识别与跟踪三部分。交通信号灯的检测与识别:采用了色彩分割与关联滤波方案进行交通灯的检测。首先建立了交通信号灯的高斯模型,提出了利用高斯向量与多色彩空间结合的图像分割方法。然后提出基于区域增长与相似性判定的关联滤波,对色彩分割后的图像进行处理。方向指示灯的识别:基于 canny 算子的边缘提取算法获取方向指示灯轮廓特征,然后提出了基于改进 hu 不变矩和马氏距离对方向指示信号灯进行分类方法交通信号灯的检测主要从颜色和形状的角度考虑。 基于颜色空间的检测方法、基于形状特征的检测方法以及一些综合类方法基于颜色空间的检测方法:l RGB 色彩空间的阈值分割方法(实时性好,但受光照影响大)l HSI 色彩空间的阈值分割方法(可消除光照影响,但计算量较大)l CIE 色彩空间的阈值分割方法(需根据环境确定参数,不考虑)HSI空间以色调、饱和度和强度三种基本特征量来感知颜色。反映了人的视觉系统感知彩色的方式。基于形状特征的检测方法轮廓分析法:边缘分析法:模板匹配法:用整幅或部分交通信号灯图形作为模板,通过交通信号灯图像与模板的匹配检测出交通信号灯。(较常用)道路交通信号灯的设置与安装规范:GB14886-2006 兴趣区域(ROI)可选定位图像实际高度的 1/3 或 1/2 高度.图像预处理光线补偿(亮度增强)把图片中亮度最大的10%的像素提取出来,该亮度的临界值称为亮度参考点,然后线性放大,使得这些像素的平均亮度达到 255。根据求得的系数把整个图片的亮度进行线性放大,具体来说就是调整图片像素的 RGB 值。其中RGB转灰度图:直方图均衡化直方图表示数字图像中每一个灰度级与其出现的频数之间的统计关系,直方图给出了图像的概貌性的描述,如图像的灰度范围,灰度级的大致分布情况。光线较暗时,直方图的分布就集中在灰度值小得一边;光线太强,其分布就其中在灰度值大的一边。交通灯信号识别系统框架数学形态学操作(1)腐蚀(erosion) 形态学腐蚀对集合元素采用向量减法将两个集合合并。 (2)膨胀(dilation) 形态学膨胀对集合元素采用向量加法将两个集合合并。 (3)开运算(opening) 先腐蚀再膨胀的运算称为开运算。开运算可以用来消除小物体、在纤细点处将物体分离,并且在平滑较大物体边界时不明显改变其面积。 形态学操作礼帽运算(Top Hat)与黑帽变换(Black Hat),对于图像 X 来说,礼帽变换从 X 中减去了 X 的开运算。开运算带来的结果是放大裂缝或局部低亮度区域,因此,从 X 中减去 X 的开运算可以突出比 X 周围的区域更明亮的区域。相反的,黑帽变换突出比 X 的走位的区域黑暗的区域。 利用发光单元颜色与发光属性的双主线的候选区域获取 区域增长算法交通灯方向指示标志的检测流程图Hu 不变矩Hu 不变矩是模式识别领域常用的信息提取方法,它具有尺度不变性和旋转不变性,对方向指示标志识别的需求非常吻合。因此,提出使用 hu 不变矩对方向标志进行信息提取,再使用基于马氏距离的分类器进行标志识别的方法。 对于数字离散灰度函数 f ( x , y ),它的 p+q 阶二维原点矩Mpq定义为基于改进Hu不变矩的特征提取基于马氏距离的标志识别具体识别方法为:选择各类方向标志样本若干,构建多个学习样本群。对于一个待识别样本,使用马氏距离公式计算它与各样本群之间的马氏距离,选择距离最小的样本群作为目标样本群。然后对这一最小马氏距离进行阈值滤波,判断该方向标志的分类。跟踪决策模块 通过考虑连续的多帧图像中检测与识别的交通信号灯状态来改进识别结果。作用:补偿漏检,去除误检包含决策滤波器及邻域滤波器两部分。决策滤波器 把从图像帧中检测到的交通信号灯状态信息,即红灯、黄灯和绿灯分别标记为 R、Y 和 G,没有检测到交通信号灯的情形被标记为 NS。 误检情形(false positive detection),即连续的多帧图像中交通信号灯的状态是确定的,中间出现少数几帧被错误检测为其他状态;或者连续的多帧图像中没有交通信号灯,中间的少数几帧却检测到交通信号灯。以两帧图像的错误检测为例,通常情况下的错误检测模式有: (1)R-R-G-G-R-R (2)R-R-Y-Y-R-R (3)Y-Y-R-R-Y-Y (4)Y-Y-G-G-Y-Y (5)G-G-R-R-G-G (6)G-G-Y-Y-G-G (7)NS-NS-R-R-NS-NS (8)NS-NS-Y-Y-NS-NS (9)NS-NS-G-G-NS-NS 上述情形中,(1)-(6)出现在交通信号灯状态被错误检测的情形,如(1)为交通信号灯原本状态为红色,被错误的检测为黄色;(7)-(9)出现在没有交通信号灯而检测到交通信号灯的情形,如(7)为图像中没有交通信号灯,却被错误的检测为红色信号灯。 漏检情形(false negative detection),即连续的多帧图像中交通信号灯的状态是确定的,中间有少数几帧没有检测到交通信号灯。以两帧图像的漏检为例,通常情况下的漏检模式有: (1)R-R-NS-NS-R-R (2)Y-Y-NS-NS-Y-Y (3)G-G-NS-NS-G-G 上述情形为图像中存在交通信号灯却没有检测到的情形,如(1)表示原本交通信号灯状态为红色,检测结果却没有交通信号灯的情形。 决策滤波器的作用即去除连续的多帧图像序列中少数几帧错误检测或漏检测的情形,但输出结果会有一定的滞后性。决策滤波器不是根据一帧图像的识别结果做出最终决策,而是充分利用识别结果的历史信息。使得系统能够在出现检测错误或漏检的情形时,恢复正确的交通信号灯状态。将前述交通信号灯识别结果放入跟踪决策模块的数据库。该数据库包含两个结果队列:修正前队列(Before Revision Output),记为 BP;修正后队列(After Revision Output),记为AP。修正前队列 BP 存储前述交通信号灯识别阶段模块的输出,即未经修正的每帧图像交通信号灯信号灯状态;修正后队列 AP 存储经跟踪决策模块处理后的输出,即经修正后每帧图像交通信号灯状态。 BP(i)为表示识别模块的第 i 帧图像的输出结果;AP(i)表示跟踪决策模块第 i 帧图像的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论