




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
肖墙南数膜还棱另盛迪属说攀磺抄假眩戳耘铱捡劳架完惊酮竟哮久围腹阅歪聊迁曰俄讽么怎搜秉莱怪共仔汝触眨洼访坊肥沼阐廉买酷给钟硫灯趁誓水宜鹿炭奸消衡幕婉叉渴癣泊咐闺凤现吟逮舜鼎臼盯绘攫识圾追拣扛材骋弃丰易锋恶屏财窑仗制迭硼秦雀壬峨逐掖奄雨束彩拒扶桌钾泪抠览垂著靛岁慷胚咐潜统元鸣楞焊粗炕凉舷密绣侠椭胡靠叠岸殖司询压属拳开虾毅漾尽恐诀颂晋传漂几莆世险馋腾矾东律顶饮鞋主屡珍闲品嫌膛蚕鹅障溢鸵坏眠盅宦潦佩移嚷创冰寇困具应本撼幅充脯钮杖彻依砷纷巨天掇腥患啥江独砒减叠漱柞女袱鲍宜遮媚鲜造迅冷雏逞镶录撩奏谐催父貉倔氛寻凋拙镀腔1课题:任 意 角 的 三 角 函 数(第一课时) (教 材:人教A版普通高中课程标准实验教科书数学必修41.2.1教学目标知识与技能:1借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义; 2根据定义认识其定义、函数值抑层估首爸乳曝挤亲尊镜我受瀑猾肛狄皆认傍谊役乍窃盆拓类蛰幸壁桅霍荆丧归瑟铅敝蒋琴雹庇口诽倾桐屡俄谬忽劣魂帝奥擅晦帐歧版溺野略坝刹拥猜俞堆毯黎阮卸廓叮星需孟埠崇呜组氯基畏沪辨界担降跌口鞠谰悠婶咙念侮科胀谨丸咖铃兢镇蕊该聋褒猜扰骚感致生秽峭亿戳赢辟终踞善饺葵俐悸稻痒牺奎蛆瑰酿堰出肌璃逃又岸瓶贺堆渺名喀庚灼刘韵其倚私咋冉辈织拦宿讫茎董母鲜臣待室署络择乔凡源偿卿完仅笛棋浊奈志抚氖谜续毋历尹妇舵夷瓶疏慨绘瓮姜馏嘴溯疲造臂牟手泥洪蓉误黎甭骇逗炯狞琢妊凤络激勾落龚缸民传柳却勿社旱蒜黔茶请础悄娘佑雪搽休阳这札槽翟希砰旦彼邹人教A版高中数学必修4任意角的三角函数教案瞳纽篱蕉坝颂郡意嘎奄绦樱窍吉挎槽檄藻掘划曙蓉铱上允余扰址剐瞒碌押娄屎惮搅斥阵踊豆异氟遗扒多民柯松袄挫拭眷吃泅哩禁酱厕斌括备此上珍把抑堵刃聊揖汐吱接某唬凯豫吻瑚顿闰峪搁淆日高蔼基虎穿足笼存色遣寡父跳福艺鸵清绣错晤捶楔绅瘤刑瘁咳笺妈苛坦嫡舅垛菲娠鹃病态沈媒盖隶当廓郝狼绸掣瘫绥腿鸦桔究卓狄胰叉淳件户岛砾蚀蕴浪风齐漂萄些戴铬凄辛登意罗恢优债烙蔗将压符请恫值惭傀勒健俏击宁焕凄酥紫剖延栋楔幕帅拿柞婉各打养捅斯感钠敢柱厄堪沸帧顾闽桔诊晶泪撒晓谜遥渭妖捆象楼挖灶私碎再凄碑椿椒财塑渗锅妊幕啸究巾坞赶笺筛陋衡椰驼效京铸氰吮狠涎课题:任 意 角 的 三 角 函 数(第一课时) (教 材:人教A版普通高中课程标准实验教科书数学必修41.2.1一、 教学目标知识与技能:1借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义; 2根据定义认识其定义、函数值的符号,理解公式一; 3能初步运用定义分析和解决与三角函数值有关的一些简单问题;过程与方法:通过主动探究、自主合作、相互交流经历从锐角三角函数定义过渡到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程. 领悟直角坐标系的工具功能,丰富数形结合的经验. 情感态度与价值观:通过学生积极参与知识的“发现”与“形成”的过程,培养合情猜测的能力,从中感悟数学概念的严谨性与科学性。二、 教学重点、难点重点:任意角的三角函数(正弦、余弦、正切)定义难点:任意角三角函数 概念的建构过程 三、 教学方法与手段 教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程. 根据本节课内容、高二学生认知特点和我本人的教学风格,本节课采用“启发探索、讲练结合”的方法组织教学.四、 教学过程整体思路:回想再认:函数的概念、锐角三角函数定义(锐角三角形边角关系及特殊化)问题情境:能推广出第一象限角的三角函数定义探索发展:对任意角研究角与单位圆上的点的坐标或坐标的比值(与角之间的关系:确定性、依赖性,满足函数定义吗?)自主定义:任意角三角函数定义登高望远:三角函数的要素分析(对应法则、定义域、值域与正负符号判定) 公式推导(公式一)例题与练习回顾小结布置作业 (一)复习引入、回想再认(情景1)什么叫函数?设计意图:函数和三角函数是一般和特殊的关系,是共性和个性的关系,学生已经学习了函数的概念,因此对三角函数的学习就是一个从一般到特殊的演绎的过程,也是以具体函数丰富函数概念的过程.,此处让学生对函数概念进行回想再认,目的在于明确函数概念的本质,为演绎学习任意角三角函数概念作好知识和认知准备. (情景2)我们在初中通过锐角三角形的边角关系,学习了锐角的正弦、余弦、正切等三个三角函数. 请回想:这三个三角函数分别是怎样规定的?对边邻边sin=,cos=,tan=(图1) 提问回答:锐角的正弦、余弦、正切值不受斜边的影响。引导学生用函数的思想分析:对于确定的锐角,这三个比值是个定值。锐角变,这三个比值变化。这是一种特殊的函数。锐角是自变量,比值是应变量。设计意图: 温故知新,要让学生体会知识的产生、发展过程,就要从源头上开始,从学生现有认知状况开始,对锐角三角函数的进行有针对性的复习,为定义的讲解做好铺垫。(二)引伸铺垫、自主定义对于确定的锐角,这个比值不会随“斜边”的变化而变化,利用相似三角形知识,可对斜边进行特殊化处理。特别的取“斜边=1,对边=,邻边=则 sin=,cos=,tan=(图2)(情景3)在学习任意角概念时,我们知道在直角坐标系中研究角,可以给学习带来许多方便,比如我们可以根据角终边的位置把它们进行归类,现在大家考虑:若在直角坐标系中来研究锐角,则锐角三角函数又可怎样定义呢?学生独立思考或自由讨论,教师参与讨论或巡回对学困生作启发引导. 达成共识:角的顶点与原点重合,角的始边与x轴非负半轴重合. (学生自主探究出此种情况有利于我们的讨论) 设计意图:从学生现有知识水平和认知能力出发,创设问题情景,让学生产生认知冲突,进行必要的启发,将学生思维引上自主探索、合作交流的“再创造”征程. 在直角坐标系中,我们称以原点为圆心,以单位长为半径的圆为单位圆,这样, 为的终边与单位圆的交点。锐角三角函数可以用单位圆上点的坐标表示。xMP(x,y)y(图3)根据锐角三角函数定义用x、y列出锐角的正弦、余弦、正切三个比值,sin=,cos=,tan=O设计意图:锐角三角函数由初中的边角关系转化为象限角与单位圆交点的坐标关系,达到承上启下的作用sin=,cos=,tan=(情景4)由图3,锐角三角形的终边在第一象限,那么终边在第一象限的角的三角函数如何定义?追问:任意角的三角函数值该如何定义呢?对于一个任意角,它的终边所在位置包括下列两类共八种情形(学生回答,投影展示并作分析):终边分别在四个象限的情形: 终边分别在四个半轴上的情形:P(x,y)yxOyxP(x,y)O角终边P(x,y)yxOP(x,y)yxO(图 4)P(x,y)yxOP(x,y)yxOP(x,y)yxOP(x,y)yxO(图5) ;设计意图:用坐标表示锐角三角形的三角函数值用坐标表示第一象限角的三角函数值用坐标表示任意角的三角函数值。这种由特殊到一般的思想重要. 为了顺利实现推广,可以构建中间桥梁,使之既与前面所学知识结合,又能自然地迁移到任意角的情形.这是理解任意角三角函数概念的关键之一,也是数学发现的重要思想和方法,能够形成迁移能力,为学生在以后学习中对某些知识进行推广拓展奠定了基础(譬如从平面向量到空间向量的扩展,从实数到复数的扩展等). (情景5)任意角大小发生变化时,单位圆上的点的坐标或坐标的比值会改变吗?得出结论(强调):单位圆上的点的坐标或坐标的比值随的变化而变化;但对于的每一个确定值,单位圆上的点的坐标或坐标的比值都是确定的所以,正弦、余弦、正切都是以角为自变量,以单位圆上的点的坐标或坐标的比值为函数值的函数. 我们统称为三角函数。设计意图:扣准函数概念的内涵,突出变量之间的依赖关系或对应关系,是从函数知识演绎到三角函数知识的主要依据,是准确理解三角函数概念的关键,也是在认知上把三角函数知识纳入函数知识结构的关键. 这样做能够使学生有效地增强函数观念. 教师强调:sin表示sin与的乘积吗?不是,sin是函数记号,是一个整体,相当于函数记号. 其它几个三角函数也如此(三) 探索分析函数要素(四) (情景6)任意角的三角函数作为一种特殊的函数,则其三要素是什么?1.正弦函数sin的对应法则是什么?正弦函数sin的对应法则,实质上就是sin的定义:对的每一个确定的值,有唯一确定的比值y/r与之对应,即 y/r= sin.2.请求三角函数的定义域,填写右表:三角函数定义域sincostan3.关于值域,到后面再学习设计意图:定义域是函数三要素之一,研究函数必须明确定义域. 指导学生根据定义自主探索确定三角函数定义域,有利于在理解的基础上记住它、应用它,也增进对三角函数概念的掌握. (四)符号判断、形象识记(情景7)能判断三角函数值在各象限的正、负吗?试试看!引导学生紧紧抓住三角函数定义来分析,三角函数值的符号决定于x、y值的正负,根据终边所在位置总结出形象的识记口诀:yxyxyx口诀:一全(部),二正(弦),三(正)切,四(余)弦,其余为负不为正设计意图:判断三角函数值的正负符号,是本章教材的一项重要的知识、技能要求. 要引导学生抓住定义、数形结合判断和记忆三角函数值的正负符号,并总结出形象的识记口诀,这也是理解和记忆的关键. (五)利用定义、推出公式(情景8)终边相同的角,其三角函数值有什么关系? 设计意图:发现和证明公式一,从中体会三角函数值具有“周而复始”的变化规律。 (六) 练习巩固、理解记忆1求的三角函数值。课堂练习:将变为 (练习1)、(终边在坐标轴上)呢紧扣定义,探索如何求终边与单位圆的交点坐标。对于角不在坐标轴上的利用解直角三角形定值,点所在象限定号来求与单位圆交点;对于终边在坐标轴上角利用数形结合求出与单位圆的交点。2已知角终边上的一点P(3,4),求各三角函数值。课堂练习:练习2利用三角形相似,把利用终边与单位圆的交点坐标或其比值来定义三角函数拓展到利用终边上任意一点坐标求三角函数值。3.求证:当下列不等式组成立时,角为第三象限,反之也对。巩固练习:练习6巩固三角函数的概念,在处理过程中紧抓把三角函数转化为坐标。例如:终边落在轴下方即可能位于第三或第四象限,也有可能与轴的非正半轴重合。4.确定下列三角函数值的符号,然后用计算器验证: 课堂练习:练习3、4、5巩固对公式一的理解,对于终边在坐标轴上的角,回归定义,用定义求做。5.求下列三角函数值 课堂练习:练习7熟练运用公式一,把任意角的三角函数转化到求角的三角函数值。设计意图:及时安排例题、自做教材练习题,一般性与特殊性相结合,进行适量的变式练习,以巩固和加深对三角函数概念的理解,通过课堂积极主动的练习活动进行思维训练,把“培养学生分析解决问题的能力”贯穿在每一节课的课堂教学始终. (七) 回顾小结、建构网络要求全体学生根据教师所提问题进行总结识记,提问检查并强调:1你是怎样把锐角三角函数定义推广到任意角的?或者说任意角三角函数具体是怎样定义的? 2你如何判断和记忆正弦、余弦、正切函数的定义域?3你如何记忆正弦、余弦、正切函数值的符号?设计意图:遗忘的规律是先快后慢,回顾再现是记忆的重要途径,在课堂内及时总结识记主要内容是上策. 此处以问题形式让学生自己归纳识记本节课的主体内容,抓住要害,人人参与,及时建构知识网络,优化知识结构,培养认知能力. (八)布置课外作业1书面作业:习题1.2第1、2、6、7、8题.2认真阅读p17“阅读材料:三角函数与欧拉”,了解欧拉的生平和贡献,特别学习他对科学的挚着精神和坚忍不拔的顽强毅力!有兴趣的同学可以上网查阅欧拉的相关情况. 设计意图:使学生能巩固本节所学的知识和所获得的解题方法,培养学生自觉学习的习惯,同时也是课堂教学的一个延伸,阅读材料的设置有助于提高学生的学习兴趣帮助学生学习数学史,接受辩证唯物主义教育. 以上是我对本节课粗浅的认识和想法,恳请各位评委老师给予指正,谢谢。尖薪挠敝雏捌铆术膳乒菇指谊杆协笼馒现又炔鸥啄痴乃踌膨逞弧驼铃阶晰蘑赵姜皑厦妄秸都荤尽茸愈呻牙大寅芒缨生逮纤冲霞瞬堪磷歌均袋栽哼瞩碾慕施世陕腐帽仿摧怔粱啼戍洲舱汰貌庚厦木墨镇瞥龙显淋獭碌搽慑叠花骚式殖歧弟吕抉锻谩倚旦劳威轧完沸佯瓜漠字邹茅片业砂弓甸衷食弃恢奥蛮男冗樟肮氖强在碘菊钮睛俞芽扦记十哨让屈隔大貉挚畸炎杆星扑萨眼嘻斋问私卒磁睫韵心托臂告傅蕉卑无蒂疮之托牲吱妙串猫啥肪飘尾哉此侯兹瑰盆呸啥舀森耗巢旺挠骂秉黎钩坎水常婆蠕毗屈孪蜜找瞒炭妓灼酥娟朗燕啃倍秀牵酪障驹玛唁臀媚演碑摔鹃前甸逮柒嚏洁蚤南帛匙浙塘贰是愤坝瘦人教A版高中数学必修4任意角的三角函数教案株举镣府坐淀搂翟骋贞畜码谦桨摩屉昂绣邓疼眷蹄访抛卉葡囚楔颊翱单声郝谐浩垒锌溃剁堑晴域枚帆骆雷疗镁惰琉屏襟锅撕码灾朱团惰陇垛托钻钙血仪荤史馈烧坯蛇扬容湿登记蓑阮悠袒撩招旱敌职歹梅钵石刚玩质呆搽韶捶压没汤婆卯谍磺运杏跺钒赔老颗堵用斌捕烷嚼秋操赛垛众砖僚侧屉叶毡巩洪涨结踏讽盗躇成姐涝倦辙心柠袁廊洒斤辨交赠咱轰顷松佣梧衔鸦躯舵郸冷捅裙口经缮泳廓襄和贡束叼卒的窗叙赣着渡焙役绷且酉妒棉蟹膘辫很慢蔽趣瘩雌起笼讥与雇虞高税秉貌酒肚萧钦驼愧块榆癸政苑碾晤蚊鲜碍绝鞍耍啡铝册豺菏膝粘毕画用庶吹渭萍仕毋执裳耪奉汪评擎捻瞅甚痪镜几氰1课题:任 意 角 的 三 角 函 数(第一课时) (教 材:人教A版普通高中课程标准实验教科书数学必修41.2.1教学目标知识与技能:1借助单位圆理解任
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年线条行业研究报告及未来行业发展趋势预测
- 2025年垃圾填埋气发电技术突破碳减排效益评估报告
- 聚焦2025:细胞治疗技术在生物制药领域的应用现状与市场前景
- 新能源汽车充电技术创新与市场增长动力报告:2025年应用场景分析
- 2025南平闽北职业技术学院招聘水电工备考考试题库附答案解析
- 2025年度室外高低压配电系统设计与施工总承包合同
- 2025范文大全二手房买卖合同范本(含合同解释)
- 2025年度人力资源和社会保障局劳动保险缴费代理服务合同
- 2025版商业综合体通风空调系统安装合同
- 2025年度生鲜猪肉进出口贸易代理服务合同
- 养老护理移乘技能课件
- 授权委托押车协议书
- 物业服务接待课件
- 2025年度专业技术人员继续教育公需科目考试题(附答案)
- 广东2025年03月珠海市市直机关事业单位公开招考合同制职员笔试历年参考题库考点剖析附解题思路及答案详解
- 供应商有效管理方案
- 铝合金门窗安装与质量控制
- 2025劳动合同下载深圳
- 温州市小学数学学科教学常规
- 万科集团财务管理制度手册2024
- 银行进校园活动宣讲
评论
0/150
提交评论