




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
26 1 5用待定系数法求二次函数的解析式 二次函数y ax2 bx c a 0 的图象和性质 顶点坐标与对称轴 位置与开口方向 增减性与最值 抛物线 顶点坐标 对称轴 位置 开口方向 增减性 最值 y ax2 bx c a 0 y ax2 bx c a 0 由a b和c的符号确定 由a b和c的符号确定 向上 向下 在对称轴的左侧 y随着x的增大而减小 在对称轴的右侧 y随着x的增大而增大 在对称轴的左侧 y随着x的增大而增大 在对称轴的右侧 y随着x的增大而减小 根据图形填表 回顾 用待定系数法求函数的解析式 已知一次函数经过点 1 3 和 2 12 求这个一次函数的解析式 解 设这个一次函数的解析式为y kx b 因为一次函数经过点 1 3 和 2 12 所以 k b 3 2k b 12 解得k 3 b 6 一次函数的解析式为y 3x 6 解 设所求的二次函数为y ax2 bx c 由已知得 a b c 10a b c 44a 2b c 7 解方程得 因此 所求二次函数是 a 2 b 3 c 5 y 2x2 3x 5 例1已知一个二次函数的图象过点 1 10 1 4 2 7 三点 求这个函数的解析式 用待定系数法求二次函数的解析式 求二次函数y ax2 bx c的解析式 关键是求出待定系数a b c的值 由已知条件 如二次函数图像上三个点的坐标 列出关于a b c的方程组 并求出a b c 就可以写出二次函数的解析式 用待定系数法求二次函数的解析式 解 设所求的二次函数的解析式为y ax2 bx c 例2已知抛物线与x轴交于A 1 0 B 1 0 并经过点M 0 1 求抛物线的解析式 故所求的抛物线解析式为 y x2 1 用待定系数法求二次函数的解析式 a b c 0a b c 0c 1 解得a 1 b 0 c 1 应用 例3有一个抛物线形的立交桥拱 这个桥拱的最大高度为16m 跨度为40m 现把它的图形放在坐标系里 如图所示 求抛物线的解析式 解 设抛物线的解析式为y ax2 bx c 根据题意可知抛物线经过 0 0 20 16 和 40 0 三点 可得方程组 通过利用给定的条件列出a b c的三元一次方程组 求出a b c的值 从而确定函数的解析式 过程较繁杂 评价 设抛物线为y a x 20 2 16 解 根据题意可知 点 0 0 在抛物线上 通过利用条件中的顶点和过原点选用顶点式求解 方法比较灵活 评价 所求抛物线解析式为 例3有一个抛物线形的立交桥拱 这个桥拱的最大高度为16m 跨度为40m 现把它的图形放在坐标系里 如图所示 求抛物线的解析式 应用 双基训练2 0 5m 1 抛物线的顶点为 3 5 此抛物线的解析式可设为 Ay a x 3 2 5By a x 3 2 5Cy a x 3 2 5Dy a x 3 2 52 抛物线c1的解析式为y 2 x 1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 佛山市2025广东佛山市国防教育训练中心招聘事业单位人员2人笔试历年参考题库附带答案详解
- 2025雁宝能源露天煤矿采煤工程专项社会招聘35人笔试参考题库附带答案详解
- 2025辽宁能源控股集团所属抚矿集团招聘74人笔试参考题库附带答案详解
- 2025湖南长沙市望城经开区招商投资有限公司招聘9人笔试参考题库附带答案详解
- 卸货操作安全培训课件
- 2025年合肥滨湖时光产业投资集团有限公司招聘26人笔试参考题库附带答案详解
- 2025安徽亳州市公共交通集团有限公司国企招聘11人笔试参考题库附带答案详解
- 2025国家机场招聘165名工作人员笔试参考题库附带答案详解
- 2025四川产业振兴基金投资集团有限公司招聘12人笔试参考题库附带答案详解
- 2025中亚电商市场洞察报告
- 第13课《警惕可怕的狂犬病》 课件
- 仪表施工全过程的管理
- 如何预防与处理跑步中的常见损伤
- MSOP(测量标准作业规范)测量SOP
- 001 220kV升压站事故油池施工方案
- 智慧停车场运营管理项目风险评估报告
- 九年义务教育全日制小学数学教学大纲(试用)
- 出资比例的协议合同
- GB/T 10345-2022白酒分析方法
- GB/T 19418-2003钢的弧焊接头缺陷质量分级指南
- 四川省参保单位职工社会保险费欠费补缴申报表
评论
0/150
提交评论