




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
离散型随机变量的均值教学设计 四川省南部中学 吴小艳下面,我将分别从背景分析、教学目标设计、课堂结构设计、教学媒体设计、教学过程设计及教学评价设计等六个方面对本节课的设计进行说明.一、背景分析:1、学习任务分析离散型随机变量的均值是随机变量及其分布第三节第一小节的内容,本节课是第一课时. 本节课主要的学习任务是从平均的角度引入离散型随机变量均值的概念,引导学生通过实际问题建立取有限值的离散型随机变量均值的概念,然后推导出离散型随机变量均值的线性性质.取有限值的离散型随机变量的均值是在学生学习完离散型随机变量及其分布列的概念基础上,进一步研究离散型随机变量取值特征的一个方面.学习本节课的内容既是随机变量分布的内容的深化,又是后续内容离散型随机变量方差的基础,所以学好本节课是进一步学习离散型随机变量取值特征的其它方面的基础.离散型随机变量的均值是刻画离散型随机变量取值的平均水平的一个数字特征,是从一个侧面刻画随机变量取值的特点.在实际问题中,离散型随机变量的均值具有广泛的应用性.因此我以为本节课的重点是:取有限值的离散型随机变量均值的概念.2、学生情况分析本节课之前,学生已有平均值、概率、离散型随机变量及其分布列,二项分布及其应用等基础知识,具备了学习本节知识的知识储备.本节课是一节概念新授课,教材从学生熟悉的平均值出发,从身边的实际问题中抽象出了取有限值的离散型随机变量均值的概念,这需要一定的概括和抽象能力.鉴于学生的概括、抽象能力不是太强,因此学生对概念的形成和理解会有一定的困难.基于以上认识,我以为本节课的教学难点是:离散型随机变量均值概念的形成和理解。二、教学目标设计:依据普通高中数学课程标准(实验)对本节课的要求,并考虑到学生的实际和学习能力,特将本节课的教学目标设定为:1.通过实际问题,使学生体会离散型随机变量均值的概念,理解离散型随机变量均值的线性性质,会计算简单的离散型随机变量的均值,并能解决一些简单的实际问题.2.通过离散型随机变量均值概念的探究形成,经历建构数学概念这一过程,使学生学会概括、抽象数学问题的方法,通过简单的应用,培养学生的数学应用意识.三、课堂结构设计:本节课从总体上讲是一节概念教学课.在教学活动中,学生是一个积极的探索者,教师的作用是要创设一种学生能够主动探究的情境,帮助学生形成科学的数学概念。基于这种考虑,结合本节课知识的逻辑关系,我设计了以下的学习顺序:结合生活中的实际问题,提出问题,引出概念体验数学,形成离散型随机变量的均值的概念建立数学,进一步探索离散型随机变量均值的线性组合性质应用数学,会计算简单的离散型随机变量的均值提高认识引入新课。问题情境组织探究探索研究概念应用题研究总结反思创设情景布置作业 巩固新知四、教学媒体设计: 根据本节课的教学任务以及学生学习的需要,教学媒体的设计如下:1、多媒体辅助教学:考虑到本节课需要呈现的教学内容较多,为节约课时,增加课堂容量起见,计划采用多媒体辅助手段.2、设计科学合理的板书: 为使学生对本节课所学习的内容有一个整体的认识,并明了知识脉络,形成知识网络.特设计板书如下: 231离散型随机变量的均值1.离散型随机变量均值的定义: 例1.2.离散型随机变量均值的线性步骤: 例23.离散型随机变量均值的线性性质: 例3五、教学过程设计:课标指出:数学教学过程是教师引导学生进行学习活动的过程,是教师和学生互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下五个活动:活动一、创设情景,引入新课教师:(讲述)前面我们学习了离散型随机变量分布列的概念,研究了一些简单离散型随机变量的分布,建立了二项分布、超几何分布等应用广泛的概率模型. 离散型随机变量的分布列刻画了随机变量取值的概率规律,但往往还需进一步了解离散型随机变量取值的特征.比如下面的问题:例:甲、乙两名射手在同一条件下射击,所得环数X1, X2 的分布列如下:8 9 100.40.2 0.48 9 10 0.20.60.2 如何判断甲乙射击水平的高低?提出具体问题2个如下思考1:某人射击10次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;问题1:(1)平均环数为:;称为射中1,2,3,4环数的_(2)称上述平均数为射中环数的_平均数。问题2:把环数X看成随机变量,求其分布列思考2:某商场为满足市场需求要将单价分别为18元/kg ,24元/kg ,36元/kg 的3种糖果按3:2:1的 比例混合销售,其中混合糖果中每一颗糖果的质量都相等,如何对每千克混合糖果定价才合理? 学生经过合作讨论,可能会得到以下两种认识: 一种认识:定价应为:=26(元/千克); 另一种认识:定价应为: (元/千克). 下面,教师引导学生讨论: 以上两种认识,哪一种定价才是混合糖果的合理价格呢?在此基础上,师生共同分析:设每份混合糖的质量为m千克,那么其中价格为18元/千克的糖果的质量为3m千克,价格为24元/千克的糖果的质量为2m千克,价格为36元/千克的糖果的质量为m千克,那么混合糖的总质量为6m千克,总价为183m+242m+36m元.经过讨论后,使学生认识到:平均每千克混合糖果的价格应为:=(元/千克)更为合理.接着,教师提出问题: 上述算式中的分数、的意义是什么?在学生思考后,教师指出:(讲述)上面的平均值实际是一种加权平均数,其中、表示一种权重系数,也称为权数.在计算平均数时,权数可以表示总体中的各种成分所占的比例,权数越大的数据在总体中所占的比例越大,它对加权平均数的影响也越大.加权平均数是不同比重数据的平均数,加权平均数就是把原始数据按照合理的比例来计算.通过师生交流,使学生达成共识:(讲述)表示价格为18元/千克的糖果在混合糖果中所占比例,表示价格为24元/千克的糖果在混合糖果中所占比例,表示价格为36元/千克的糖果在混合糖果中所占比例.接下来,教师进一步提出问题:(讲述)“在搅拌均匀的混合糖果中,如果每一颗糖果的质量都相等,”那么在混合糖果中任取一颗糖果,取到每颗糖果的可能性相等,这样在混合糖果中任取一颗,取到的糖果恰好是价格为18元/千克的糖果的概率是多少?恰好是价格为24元/千克的糖果的概率是多少?恰好是价格为36元/千克的糖果的概率是多少?经过讨论后,学生达成以下共识: 在混合糖果中任取一颗,取到的糖果恰好是价格为18元/千克的概率是,恰好是价格为24元/千克的概率是,恰好是价格为36元/千克的概率是.教师给予肯定,并指出每千克混合糖果的平均价格的算式中、的概率意义(讲述).接下来,教师又进一步提出问题:假如从这种混合糖果中随机选取一颗,记为这颗糖果的原来单价(元/千克),你能写出的分布列吗?学生经过讨论后,不难得出随机变量的分布列为:这时,教师在此提出问题:每千克混合糖果的平均价格用X的取值及其相应的概率如何表示呢?由于上面的铺垫,学生得出:每千克混合糖果的平均价格恰为:(元/千克) 即18P(X=18)+24P(X=24)+36P(X=36)=23(元/千克)此时,教师指出:(讲述)这里混合糖果的平均价格,其实就是随机变量X的取值与其相应概率乘积之和.这就是本节课要研究的离散型随机变量的均值-教师板书课题(离散型随机变量的均值)设计意图:以学生熟悉的实际生活问题为背景,从求学生熟悉的样本平均数为出发点,以问题串为主线,以师生互动为基本活动方式,采用小碎步,层层递进,逐步深入的方法,最终得出“离散型随机变量X取值的平均值就是离散型随机变量X的所有取值与其相应概率乘积之和”的结论.这样,既可使学生感受数学与生活的联系,又可激发学生的学习兴趣和热情.同时更是考虑到“离散型随机变量的均值”这一知识的最近发展区就是样本平均值与概率,有利于学生进行知识的正向迁移,也为下一步学生通过概括、抽象得出科学定义做好了铺垫.活动二、概括抽象,构建概念:教师:(提出问题)一般地,什么叫离散型随机变量的均值?先由学生尝试定义,教师修正,最后教师再给出形式化定义:一般地,若离散型随机变量X的概率分布为:X则称为随机变量X的均值或数学期望,数学期望又简称为期望它反映了离散型随机变量取值的平均水平.设计意图:这样设计可以使学生经历离散型随机变量均值概念的形成过程,体验从具体问题中概括、抽象,形成定义的思想方法,体会概括、抽象是一种常用的数学逻辑方法,使学生学会科学定义的方法.新知2:若X为随机变量,其中为常数,则也是随机变量,且 XYP推导过程:所以:E(Y)=1.随机变量的分布列是(1)则E= (2)若=2+1,则E= 135P0.50.30.2135P0.50.30.2135P0.50.30.22.随机变量的分布列是47910P0.3ab0.2 活动三、例题分析,应用示范例题1.在篮球比赛中,罚球命中1次得1分,不中得0分,如果某篮球运动员罚球命中的概率为0.7,那么他罚球1次的得分的均值是多少?(幻灯片呈现)教师分析:求运动员罚球1次的得分的均值,根据离散型随机变量均值的定义,需先求出随机变量的分布列.然后可根据定义式算出X的均值.师生共同给出规范解答:解:离散型随机变量X的分布列为:100.70.3由此可根据随机变量均值的定义,利用公式得:设计意图:例1的设计是为巩固并加深学生对本节数学概念的理解,同时也是为了对解答简单应用题做好示范,以规范学生的解题过程.思考:离散型随机变量的均值与样本平均值之间的联系和区别是什么?结论:从定义可以看出,随机变量的均值是一个常数,而样本的均值是一个随机变量,这是两个均值的根本区别. 对于简单随机样本而言,随着样本容量的增加,样本的平均值越来越接近于随机变量的均值。设计意图:设计这样的问题意在使学生弄清离散型随机变量的均值与样本平均值之间的联系和区别,有利于加深对离散型随机变量均值的理解和认识.例2.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分已知某运动员罚球命中的概率为,他连续罚球3次;(1)求他得到的分数X的分布列;(2)求X的期望。新知3:(1)X服从两点分布,则 (2)若,则 相关练习1. 一个袋子里装有大小相同的3 个红球和2个黄球,从中有放回地取5次,则取到红球次数的数学期望是 .2、有一批数量很大的商品,其中次品占1,现从中任意地连续取出200件商品,设其次品数为X,求EX活动五、归纳小结、布置作业(一)归纳小结:这节课我们学习了什么知识?1、离散型随机变量均值的定义2、离散型随机变量均值的步骤(1)列出相应的分布列;(2)利用公式计算:.3、离散型随机变量均值的线性性质及应用 :X服从两点分布,则 P 若,则 np 设计意图:采用师生共同归纳小结的方式,通过总结,反思深化学生对基础概念、基本理论的理解,同时培养学生宏观掌握知识的能力除了注重知识,还注重引导学生对解题思路和方法的总结,可切实提高学生分析问题、解决问题的能力,并让学生养成良好学习数学的方法和习惯(二)布置作业:1、课本习题2.3A组2、42、(选做题)课本习题2.3 B组2设计意图:作业深化学生对概念的理解,强化学生对概念的应用,起到培养学生自学能力的作用选做题充分兼顾学有余力的同学有更好的发展空间六、教学评价设计1、评价学生学习过程本节课在情境创设,例题设置中注重与实际生活联系,让学生体会数学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医学手术艺术之美 手术操作步骤详解
- 利用图表展示项目进度与成果
- 快餐文化在国际市场的传播与推广
- 房地产项目管理的基本原则
- 蜡笔小新妆容的关键步骤
- 2025至2030中国折扣商店行业市场发展现状及前景趋势与发展趋势分析与未来投资战略咨询研究报告
- 2025至2030中国室内儿童乐园行业发展分析及发展趋势分析与未来投资战略咨询研究报告
- 2025至2030中国婴儿椅行业产业运行态势及投资规划深度研究报告
- 2025至2030中国天然提取物调味料行业项目调研及市场前景预测评估报告
- 小学四年级数学几百几十数乘以一位数竞赛自测训练题带答案
- 大数据专业调研报告
- 二年级阅读题复习课ppt配套教案
- TCIECCPA030-2023零碳工厂创建与评价通则
- 部编版二年级语文下册《雷锋叔叔你在哪里》评课稿
- 炎黄职业技术学院辅导员考试题库
- 改进维持性血液透析患者贫血状况PDCA
- RJ人教版八年级数学下册课件勾股定理试卷讲评
- 12花丝镶嵌的制作流程花丝工艺
- 苏教版2022~2023学年小学数学毕业模拟检测试卷(二)
- 高压电工证培训课件(第6章电力系统过压)
- 公路工程投标技术标施工组织设计
评论
0/150
提交评论