已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
英文原文CONSIDERATIONSINUNITSUBSTATIONDESIGNTOOPTIMIZERELIABILITYANDELECTRICALWORKPLACESAFETYByDavidB.DurocherSeniorMember,IEEEIndustryManagerEatonCorporationABSTRACTManylegacylowandmedium-voltageunitsubstationsinstalledtodayarebaseduponolderdesignsthattookadvantageofreducedfirstcost“opportunities”allowedbyexistinginstalationcodesandstandards.Fast-forwardtohowthesesubstationdesignsfairinsafetyandreliabilitytoday,particularlyinindustrialprocessapplicationsfoundincement,pulpandpaper,petroleum&chemicalandothers,someoftheexercised“opportunities”appliedinthepastbegintolookmorelikeliabilitiesthanassets.Legacyengineeringdecisionsoncethoughttobeprudenttakeonnewmeaningstoday,particularlywhenthesedecisionsareviewedthroughthelensofemergingnewworkplacesafetystandards.Thecriticalissueofaddressingdestructivearc-flashhazardsassociatedwithpersonsworkingonoraroundenergizedelectricalequipmentmustnowbeconsidered.Becausetraditionalsubstationdesignsoftenappearedtoinvolvesomecompromiseregardingbothsafetyandreliability,adesignteamofamajorprocessindustryusertookafreshlookatunitsubstationdesign.ThedesignreviewtookplaceinconjunctionwithconstructionofaGreenfieldplantbuiltinthespringof2009intheUSA.Thispaperwillreviewthedesignlimitationsoftraditionalunitsubstationconfigurations,offeranoverviewofthealternativesconsideredbytheGreenfieldsiteprojectteam,anddiscusstechnicalandsafetyvalidationofthedesignthatwasultimatelyselectedandinstalled.Economiccomparisonstotraditionaldesigns,changesintheowneroperatingandsafetyproceduresforplantpersonnelasaresultoftheengineeringdesignchanges,andoveralldesignacceptancebyoperationswillalsobereviewedinthispaper.IndexTermsProcessIndustries,PowerDistribution,UnitSubstations,DesignforSafety,ElectricalWorkplaceSafety.INTRODUCTIONLowandmediumvoltageunitsubstationsareapplieduniversalyacrossmosteveryindustry.Atthetree-toplevel,unitsubstationsareusedsimplytotransformmedium-voltage,typically15to25kV,toalowerdistributionvoltage,typically0.48to4.16kV,forapplicationinsupportingahostofvariousmotorandprocessequipmentloads.Fig.1showsatypicallow-voltageunitsubstation.Inthiscase,theprimaryassemblyattheleftisamedium-voltagefusedloadbreakswitch.Forthisexample,wewillassumetheprimaryvoltageis13.8kV.ForassembliesinNorthAmericanindustry,thisassemblyistypicallydesignedtometal-enclosedswitchgearstandardANSI/IEEEStandardC37.20.31.Thisassemblyincludesaload-breakisolationswitchwithratingsof600or1200amperesandamedium-voltagecurrent-limitingfuse,appropriatelysizedtoprotectthetransformer.Theprimaryswitchgearisclose-coupledtoasubstationtransformer,eitherdry-typeorliquidfilled.ThesubstationtransformerisdesignedtoANSI/IEEEStandardC.57.12withwall-mountedprimaryandsecondarybushings.Therearemanydifferentsubstationtransformerdesignalternativestochoosefrom,beyondthescopeofthispaper.Goodinformationonthealternativescanbefoundinothertechnicalpapers,including3.Inthiscase,thetransformerratingisshownat2000kVA.Withasecondarydistributionvoltageat480Y/277volts,thelow-voltagebushingsareshownclose-coupledtometalenclosedlow-voltageswitchgear.InFig.1,thelow-voltageswitchgearconsistsofa3200amperesecondarymainbusandsecondarymetering,withnosecondarymaincircuitbreaker,connectedtofour1200amperefeedercircuitbreakers.Thereareagainvariationsonlow-voltageswitchgeardesigns.Forprocessindustryapplications,mostfrequentlytheseassembliesaremanufacturedtoUL1558Standards4.DESIGNCONSIDERATIONSInanticipationoftheupcomingproject,thedesignteamfortheGreenfieldsitetookonthetaskofinvestigatingexistingunitsubstationconfigurationscarefullytoidentifywheretheremaybesomeinherenthiddenflawsinthedesign.Itisimportanttonotethatprevailingcodesandstandardsregardinginstallationofthisequipmenthadanimpactontheunitsubstationdesign.IntheUS,theprevailinginstallationdocumentthatappliesistheNationalElectricalCode(NEC)5.Letsinvestigatetwoareasofthiscodethatimpactthedesignandinstalationoftheunitsubstationpresentedhere.NECArticle240.21(C)2OvercurrentProtectionArticle240.21(C)oftheNECaddressesrequiredovercurrentprotection,specificalyrelatedtotransformersecondaryconductors.Thearticlestatesthat“asetofconductorsfeedingasingleloadshallbepermittedtobeconnectedtoatransformersecondary,withoutovercurrentprotectionofthesecondary”.Thearticledefinessixconditions,specifiedin240.21(C)(1)through240.21(C)(6),underwhichsecondaryovercurrentprotectionisnotrequired.Sortingthroughthesixoptionsforourclose-coupledunitsubstationexample,pointsustotheconditionoutlinedin240.21(C)(2)whichmostcloselyapplies.Thisconditiongetsfairlyinvolved,withfourdifferentsub-conditions,allwhichmustapplyinordertosatisfytheexceptionofnosecondaryprotection.Relevantlanguageinthesesub-conditionsincludes:“240.21(C)(2):TransformerSecondaryConductorsNotover3m(10ft)Long.(1)Theampacityofthesecondaryconductorsisa).Notlessthanthecombinedcalculatedloadsonthecircuitssuppliedbythesecondaryconductorsb).Notlessthantheratingofthedevicesuppliedbythesecondaryconductorsornotlessthantheratingoftheovercurrent-protectivedeviceattheterminationofthesecondaryconductors.”Thefirstitem(1)a)aboverequiresthattheengineerperformcalculationstodeterminethetotalconductorloadandthenspecifyaconductorsizetosupportthecalculatedload.ReferringbacktotheFig.1example,notethatthesecondaryconductorisspecifiedat3200A.So,althoughthetotalconnectedratedloadofthesecondaryfeederbreakersis4800A(fourbreakersratedat1200Aeach),theNECallowsthedesignertoassumealoaddiversityandsizethesecondarybusassomelowervalue.Theseconditem(1)b.inessencestatesthatthesecondaryconductorampacitybeeithergreaterthantheovercurrentdeviceatwhichtheconductorsterminate(inthisconfiguration,thereisnosuchdevice)orgreaterthanconductororbusratingintheequipmentwheretheconductorsterminate.Fromthislanguage,itseemsclearthatsecondarybusprotectionfortheunitsubstationisnotrequired.Thereisongoingdebateinsomecirclesregardingtheword“device”inthisarticle,assomeseethetermdevicetomeansomethingotherthentheswitchgear.Interestingly,theNECCodeMakingPanelsupportingthisArticleisreviewingthislanguageandconsideringfuturerevisiontoclarifythemeaning.Thisaside,notealsothatArticle240.21(C)includesaFinePrintNotestating“Forovercurrentprotectionrequirementsfortransformers,see450.3.NECArticle450.3EquipmentTransformersArticle450.3oftheNECaddressessecondaryovercurrentprotectionoftransformers.Note2forTable450.3(A)states:“Wheresecondaryovercurrentprotectionisrequired,thesecondaryovercurrentdeviceshallbepermittedtoconsistofnotmorethensixcircuitbreakersorsixsetsoffusesgroupedinonelocation”.Traditionallyreferredtoasthe“sixdisconnect”or“sixhandle”rule,thisprovisionallowstheusertoforegosecondaryovercurrentprotectioninaunitsubstation,providedtherearenomorethansixfeederdevicesintheassembly.FortheexampleshowninFig.1,thisisclearlythecase,sothisassemblycouldbeinstaledwithoutconcernthatthedesignwouldviolatetheapplicableinstallationcode.APPLICATIONWAKE-UPCALLAlthoughthe“sixfeedersnomain”unitsubstationpassesallrequirementsoutlinedintheapplicablestandards,theunitsubstationequipmentmanufacturerandtheprojectteaminvestigatingdesignalternativeswerenotsatisfiedthiswasthebestapproach.Earlierexperiencesinindustrialplantswherearc-flashstudieshavebeenperformedasoutlinedinNFPA-70E6usingcalculationmethodsinIEEE15847yieldedsomeveryrevealinganddisturbingresults.Intheeventofasecondarybusfault,theNFPA-70Estandardrequiresthattheupstreamovercurrentprotectivedevicebeusedindeterminingtheavailablearcingcurrent.Inthiscase,thecurrent-limitingfuseontheprimaryofthesubstationisthedeviceusedinthecalculation.Specifically,Fig.2belowshowscalculationsrevealingarcflashenergiesatthesecondaryswitchgearinexcessof700calories/cm2.TheselevelsaredefinedinIEEE1584asUNAPPROACHABLE,whereeffectivelynoPersonalProtectiveEquipment(PPE)wouldbeadequateinsafeguardingpersonnelshouldabusfaultoccurwhilepersonswereworkingontheenergizedsubstation.Inmanyexistingfacilities,unitsubstationfeederdeviceswereusedasalockout/tagoutpointwhiledownstreamequipmentwasbeingservicedormaintained.Theelevatedarcflashenergieseffectivelymadeitunsafetorack-outasecondaryfeederbreakerwhilethesecondarybuswasenergized.Inprocessindustryapplicationswhereelectricalworkplacesafetyisparamountandenergizedlockout/tagoutiscommon,the“sixfeedersnomain”unitsubstationdesignwassimplynolongerapracticaloption.AnumberofvintageunitsubstationsthatemployedtheconfigurationshowninFig.2,haveeffectivelybeenupgradedtoimprovereliabilityandelectricalsafety.Althoughbeyondthescopeofthispaper,onesuchupgradeispresentedinthecasestudyoutlinedin8.Returningtotheprimarycurrent-limitingfuseintheunitsubstationshowninFig.2,selectingtheratingofthisfusetoaccountfortransformerinrushresultsinameltingtimerequirementupto12Xthetransformerratedprimarycurrentfor0.1seconds.Inthe2000kVAsubstationshowninFig.2,a125Efuseisapplied.Aboltedsecondaryfaultwouldresultinaprimarycurrentoflessthan1000amps,resultinginafuseclearingtimeofover2seconds.Theexamplecalculationassumesanarcingfaultof10,000amperesonthesecondarybus,resultinginafuseclearingtimeof160seconds.Ineitherthecaseofaboltedfaultoranarcingfault,thesecondaryarcflashenergyonthesecondarybusofthisunitsubstationdesignisUNAPPROACHABLE.Inaddition,shouldabusfaultoccurwhilethisassemblywasenergized,thelikelyresultbeyondextremelyhigharcflashenergieswouldbeextensiveequipmentdamagecausedbytheheatenergydevelopedbeforetheprimaryfusewouldclear.Inaprocessindustryenvironment,thistranslatestohoursorperhapsdaysofdowntime.Intheend,theprimaryfuseinthe13.8kVfusedload-breakswitchshowninFig.2,isintendedtoprotectthetransformer,notthesecondarybus.Addingasecondarymaincircuitbreakerwouldresolvethisissueofprotectioninsomeapplications.Thiswouldineffectprotectthesecondarybusdownstreamofthemainbreaker.However,thebusfromthetransformersecondaryterminalsuptothemainisstilnotadequatelyprotected.Inapplicationswheretheprimaryassemblyandtransformerareoutdoorsandcableconnectedtothesecondaryswitchgear,thesecondarybusprotectionissuebecomesmoreproblematic.Clearly,anopportunityexistedfortheprojectdesignteamtoconsiderdesignalternativesthatwouldofferbetterperformance,bothinreliabilityandworkplacesafety.APATHFORWARDVIAPRODUCTTECHNOLOGYRecognizingthelimitationsofthelegacyunitsubstationdesign,theprojectteamworkedwiththepowerdistributionequipmentsuppliertoreviewalternativedesignsthatmightofferimprovedperformance.Becauseoftheextremehazardandpotentialforextendedoutagetime,thegroupquicklydismissedtheage-oldapproachofinstalingunitsubstationsbasedonthe“sixfeeders-nomain”design.Thestrategywastolookatdesignsthatincludedasecondarymainovercurrentprotectivedevice(inthiscase,alow-voltagepowercircuitbreaker)andtheninvestigatedesignalternativesthatmightofferadvantagestothisdesignapproach.Thegrouprecognizedthataddingasecondarymaindevicewouldaddcostandwasinterestedinalternativesthatmightperformaswell,orbetter,thanthesecondarymaindesign.Thegroupconsideredseveralemergingtechnologiesthatmightofferimprovedperformance.Threetechnologieswereconsideredandultimatelyapplied.Thesearediscussedbelow:15kVVacuumPrimaryCircuitBreakerOnetechnologythatappearedpromisingwasintheareaofmedium-voltagevacuumcircuitbreakers.Thegroupbelievedthatapplicationofalow-costcircuitbreakerintheprimaryoftheunitsubstation,providingbothprimaryandsecondarycurrentprotection,wouldbeadesirablealternativetothetraditionalfusedload-breakswitch.Althoughvacuumcircuitbreakershavetraditionallyinvolvedhigherspaceandcostthanafusedswitch,somemanufacturershaddevelopednewervacuumbreakersthatlookedpromising.Fig.3showsandexampleofonesuchdesignavailable.IntheNorthAmericanmarkets,vacuumcircuitbreakersaremanufacturedtoANSIStandardC37.209.Inspiredinpartbyatrendtowardglobaldesignstandards,traditionaldesignshavegivenwaytonewerofferingsthataresmaller,lighter,andhaveimprovedfunctionality.AsisshowninFig.3,althoughthenewerdesignvacuumbreakersareonlyavailableinlimitedratings,mostofferasmallersizewithfewerparts.NotablydifferentfromtraditionalZoneSelectiveInterlockingcyclesona60hertzsystem.Ifhoweverabusfaultshownat(2)onFig.4occurred,themaincircuitbreakerwouldbecalledupontoclearthefault.Withoutzoneselectiveinterlocking,thebreakershort-timedelaytripsettingof0.5secondsor30cycleswoulddictatetheclearingtime.Azoneselectiveinterlocking(ZSI)controlconnectionbetweenallcircuitbreakersaddsintelligencetothissystem.Whenabusfaultoccurs,ZSIallowsthemainbreakertointerrogatethefeederbreakersinthezonetodetermineifthey“see”afaultaswell.Ifallreportbackthatthereisnowdownstreamfault,thenthemainbreakerwilltripwithnointentionaldelay.TheZSIfeatureissimpletoenableandcanoffersignificantadvantagesinreducingpotentialarcflashhazardsdescribedpreviously.Foratypicallow-voltagesystemcapableofdelivering35,000amperessymmetricalfaultcurrent,calculationsinaccordancewithIEEE1584showthataddingZSIcanreducetheincidentenergyfrom43.7calories/cm2to7.0calories/cm2.TheNFPA70EStandardforElectricalSafetyintheworkplacedefinesthefirstconditionaboveasUNAPPROACHABLEandthesecondasHazardRiskCategory2,asignificantdifference.MultipleSettingsGroupsOnefinaltechnologyappliedintodayspowerdistributionsystemsisanewercapabilityofferingmultiplesettingsgroupcapabilityforprotectiverelaysusedwithcircuitbreakers.Althoughthiscapabilityhasbeenafeatureforseveralyearsonafewhigher-endprotectiverelaysusedinmedium-voltagesystems,severaltrippingsystemsappliedinintegraltripunitsoflow-voltagepowercircuitbreakersnowalsoincludethisfeature.InasimilarconceptdescribedaboveinZSIapplications,useofmultiplesettingsgroupsforcircuitbreakertrippingenablesthetrippingsystemtoresponddifferentlyfordifferentsystemconditions.Again,referringtoFig.4,ifadownstreamfaultconditionexisted,thefeedercircuitbreakersettingwoulddictatethatthe0.20secondshort-timedelaysettingtimeoutbeforethebreakertrips.Thepowersystemsengineerdeterminesthissettingtoassurecoordinationwithdownstreamovercurrentprotectivedevicesandsystemloadssothatthedevicenearestthefaulttripsfirst.Insomecasesforinstance,largedownstreammotorsmayhavehighinrushcurrentsorlongaccelerationtimesthatwillaffecttheshort-timesettingofthefeederbreakersintheunitsubstation.Asdiscussedpreviously,addinganintentionaldelaytoabreakerclearingtimecomesatthecostofhigherincidentenergyandarc-flashhazards.Whenpersonnelareworkingindownstreamequipment,suchasalow-voltagemotorcontrolcenter,theopportunityforadroppedtooloraccidentalcontactofatoolorprobebetweenanenergizedconductorandgroundisincreased.Asthiscouldleadtoahigherincidentofshortcircuitsorarc-flashincidents,itisoftenprudenttoreducetripsettingstoenabletheupstreamcircuitbreakertotripfaster.Multiplesettingsgroupseffectivelyallowforthepowersystemsengineertoestablishonegroupofprotectivesettingsduringnormaloperationsandanother“maintenancemode”settingthatcanbeusedwhilepersonnelareworkingindownstreamequipment.Fig.5illustratesapplicationofthemultiplesettinggrouptechnology.AttheleftofFig.5,theintegralLong-time,Short-time,Instantaneous&Ground(LSIG)integraltripunitmountedinthelow-voltagepowercircuitbreakerisequippedwithanon-offswitchthatenablesasecond“group”ofsettings.Inthenormalmode,thepowersystemsengineersettingsarebasedonaselectivelycoordinatedsystem,whileinthemaintenancemode,theLSIGsettingsarereplacedwithaninstantaneousonlysetting,effectivelydisablingthenormalshort-timesettings.Theresultisafasterclearingtimeofthecircuitbreakershouldadownstreamfaultoccur.AttherightofFig.5,notethatthebeforeandaftercoordinationcurvesareshowntodemonstratetheimpactofthemaintenancesetting.Theselectivelycoordinatedcurvessetattheleftshowsthemainandfeedercircuitbreakercurvesandplotsashort-circuitcurrentof5,600amperes.Notethatduetotheshort-timedelaysettingforthefeedercircuitbreaker,thetimetoclearthislowerlevelfaultisextended.Thecurvesetonthefarrightshowsthemaintenancemodeenabled,whicheffectivelyshiftstheinstantaneoussettingofthefeederbreakertotheleft.Theresultinthisexampleisareductioninarc-flashenergyfrom11calories/cm2tolessthan4calories/cm2.Thisdemonstratestheadvantageofthemultiplesettinggroupfeature.Themaintenance(orinstantaneousonly)modeactuallyallowsforfasterclearingtimesthanthenormalinstantaneoussettings,inpartbecausethetrippingsystemrespondstopeakcurrentsasopposedtothenormalRMSorrootmeansquaredcurrents.SincethetrippingsystemisnotburdenedwiththeadditionaRMScalculationbeforesendingasignaltothecircuitbreakertotriponovercurrent,thetimetoactualyopenthebreakercontactsduringafaultisreduced.Typically,instantaneousclearingtimescanoccurin3cyclesratherthanthestandard5-cyletripforthisclassofcircuitbreaker.Althoughclearinginanadditional2cycles(32milliseconds)seemsinsignificant,thisactuallycanmeanadifferenceintheHazardRiskCategory,typicallyreducingthehazardfromHRC2toHRC1.Itisimportanttounderstandthatthemultiplesettingsgroupcapabilitydoesrepresentatrade-offontwodifferentfronts.First,dependingontheinstantaneoussettingselected,selectivecoordinationofthesystemmaybecompromised.IntheFig.5example,notethatthecurvetothefarleftoftheplot(brownincolor)representsanacross-the-linestartofthelargestmotorfedbythissubstationfeederbreaker.Intheselectivelycoordinatedsetting,startingthismotorwouldassurethismotorcouldbestartedwithoutafeederbreakertrip.However,inthemaintenancemode,notefromthecurvesetattherightthatthefeederbreakerwouldindeedtrip.Second,applicationofmultiplesettingsgroupfunctionalitydictatesthatfacilitymaintenancepracticesberevisedandthenadheredto.Maintenancepersonswillneedtoadoptaprocesswherethemaintenancemodecouldbesafelyengagedwhiledownstreamenergizedworkisbeingperformed,andalsobeassuredthattheprotectivesettingswerereturnedtonormalaftermaintenanceiscompleted.Itwouldbetypicalforthemaintenancemodesettingstobeenabledwithalockableswitchanddoor-mountedlightsothisalternativemaintenancesettingcouldbeincludedinthefacilitylockout/tagoutprocedure.Finally,itisimportanttonotethattheOccupationalSafetyandHealthAdministration(OSHA)clearlyprohibitsworkonenergizedequipment.Specificaly,OSHA29CodeofFederalRegulations(CFR)Part1910.333(a)(1)9requiresthatlivepartsbedeenergizedbeforeanemployeeworksonornearthem.Thereissimplynoargumentthatturningthepoweroffresultsinthesafestworkingcondition.However,insomeprocessindustryenvironments,deenergizingthepowersystemis
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年福州职业技术学院单招(计算机)考试备考题库必考题
- 2026年绵阳飞行职业学院单招综合素质考试题库附答案
- 2026年长春东方职业学院单招综合素质考试模拟测试卷附答案
- 2026年四平职业大学单招职业适应性测试题库及完整答案详解1套
- 2026年赣南卫生健康职业学院单招职业倾向性考试题库附答案
- 2026红色幼儿园寒假家长会模板
- 2026年苏州工业园区职业技术学院单招职业技能考试题库及参考答案详解
- 2026年海南职业技术学院单招职业倾向性考试题库含答案详解
- 2026年冀中职业学院单招职业适应性测试题库及答案详解1套
- 2026年河南省平顶山市单招职业适应性测试题库含答案详解
- 2025年秋新教科版三年级上册科学全册知识点(新教材 )
- DB11-T 2209-2023 城市道路慢行系统、绿道与滨水慢行路融合规划设计标准
- 2025年党的二十届四中全会精神宣讲稿及公报解读辅导报告
- 工程勘察设计收费标准
- 《区域数字化专病管理中心建设指南》
- 2025国家应急管理部所属单位第二批次招聘1人模拟试卷及一套参考答案详解
- 2025年秋统编版(2024)小学语文三年级上册第五单元模拟测试卷及答案
- 钢结构防火涂料应用技术规程TCECS 24-2020
- 2025年中国工业级小苏打行业市场分析及投资价值评估前景预测报告
- 2025年共青团团课考试题库(含答案)
- HPV疫苗知识培训课件
评论
0/150
提交评论