




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数的奇偶性 创设情景 观察图片 偶函数 你会画下列函数图象吗 f x x2f x x 画好后观察他们图象的共同特征 1 已知函数f x x2 求f 2 f 2 f 1 f 1 及f x 并画出它的图象 解 f 2 2 2 4f 2 4 f 1 1 2 1f 1 1 f x x 2 x2 f x f x x x 思考 通过练习 你发现了什么规律 f 2 f 2 f 1 f 1 f x f x 说明 当自变量任取定义域中的两个相反数时 对应的函数值相等即f x f x 如果对于f x 定义域内的任意一个x 都有f x f x 那么函数f x 就叫偶函数 偶函数定义 奇函数 你会画下列函数图象吗 f x 1 xf x x3 画好后观察他们图象的共同特征 2 已知f x x3 画出它的图象 并求出f 2 f 2 f 1 f 1 及f x 解 f 2 2 3 8f 2 8 f 1 1 3 1f 1 1 f x x 3 x3 x x f x f x f 2 f 2 f 1 f 1 f x f x 思考 通过练习 你发现了什么规律 说明 当自变量任取定义域中的两个相反数时 对应的函数值也互为相反数 即f x f x 奇函数定义 如果对于f x 定义域内的任意一个x 都有f x f x 那么函数f x 就叫奇函数 对奇函数 偶函数定义的说明 1 定义域关于原点对称是函数具有奇偶性的必要条件 b a a b 2 奇 偶函数定义的逆命题也成立 即 若f x 为偶函数 则f x f x 成立 若f x 为奇函数 则f x f x 成立 3 如果一个函数f x 是奇函数或偶函数 那么我们就说函数f x 具有奇偶性 练习1 说出下列函数的奇偶性 偶函数 奇函数 奇函数 奇函数 f x x4 f x x 1 f x x 奇函数 f x x 2 偶函数 f x x5 f x x 3 说明 对于形如f x xn的函数 若n为偶数 则它为偶函数 若n为奇数 则它为奇函数 例1 判断下列函数的奇偶性 1 f x x3 2x 2 f x 2x4 3x2 解 定义域为r f x x 3 2 x x3 2x x3 2x 即f x f x f x 为奇函数 解 定义域为r f x 2 x 4 3 x 2 2x4 3x2 即f x f x f x 为偶函数 练习2 判断下列函数的奇偶性 2 f x x2 1 3 f x 5 4 f x 0 解 3 f x 的定义域为r f x f x 5 f x 为偶函数 解 4 定义域为r f x f x 0又f x f x 0 f x 为既奇又偶函数 说明 函数f x 0 定义域关于原点对称 为既奇又偶函数 5 f x x 1 6 f x x2x 1 3 解 5 f x x 1 f x x 1 f x f x 且f x f x f x 为非奇非偶函数 解 6 定义域不关于原点对称 f x 为非奇非偶函数 解 8 定义域为 0 定义域不关于原点对称 f x 为非奇非偶函数 奇函数说明 根据奇偶性 偶函数函数可划分为四类 既奇又偶函数非奇非偶函数 2 奇偶函数图象的性质 2 奇函数的图象关于原点对称 反过来 如果一个函数的图象关于原点对称 那么这个函数为奇函数 1 偶函数的图象关于y轴对称 反过来 如果一个函数的图象关于y轴对称 那么这个函数为偶函数 注 奇偶函数图象的性质可用于 简化函数图象的画法 判断函数的奇偶性 本课小结 1 两个定义 对于f x 定义域内的任意一个x 如果都有f x f x f x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论